BMC

NEWS

Official Journal of the British Milers' Club

VOLUME 3 ISSUE 14
AUTUMN 2002

The British Milers' Club

Sponsored by NIKE

Founded 1963

NATIONAL COMMITTEE

President Lt. CoI. Glen Grant,
C/O Army AAA, Aldershot, Hants
Hale Barns WA15 OSG
Vice Chairman Matthew Fraser Moat, Ripple Court, Ripple CT14 8HX
National Secretary Dennis Webster, 9 Bucks Avenue, Watford WD19 4AP
Treasurer Pat Fitzgerald, 47 Station Road, Cowley UB8 3AB
Membership Secretary Rod Lock, 23 Atherley Court, Upper Shirley SO15 7WG
BMC News Editor Les Crouch, Gentle Murmurs, Woodside, Wenvoe CF5 6EU BMC Website Dr. Tim Grose, 17 Old Claygate Lane, Claygate KT10 0ER

2001 REGIONAL SECRETARIES

Coaching
Frank Horwill, 4 Capstan House, Glengarnock Avenue, E14 3DF
North West Mike Harris, 4 Bruntwood Avenue, Heald Green SK8 3RU
North East (Under 20s)David Lowes, 2 Egglestone Close, Newton Hall DH1 5XR
North East (Over 20s) Phil Hayes, 8 Lytham Close, Shotley Bridge DH8 5XZ
Midlands Maurice Millington, 75 Manor Road, Burntwood WS7 8TR
Eastern Counties Philip O'Dell, 6 Denton Close, Kempston MK
Southern Ray Thompson, 54 Coulsdon Rise, Coulsdon CR3 2SB
South West Mike Down, 10 Clifton Down Mansions, 12 Upper Belgrave Road, Bristol BS8 2XJ
South West Chris Wooldridge, 37 Chynowen Parc,
(Devon and Cornwall) Cubert TR8 5RD
Scotland
Messrs Chris Robison and
Brian McAusland,
Ard Bruach, School Brae, Lochearnhead FKI9 8PR
Wales Steve Mosley, 95 Beale Close, Danes Court, Cardiff CF5 2RU.. Malcolm McCausland, 11 Iveagh Park, Prehen, Londonderry BT47 2PR

CHAIRMAN GRAND PRIX COMMITTEE
Tim Brennan, 6 Belmont Drive, Maidenhead SL6 6JZ

TECHNICAL ADVISERS

a) David Iszatt, 27 Selly Wick Road, Selly Park B29 7JJ
b) Ollie Wright, C/0 Frank Horwill as above
c) Rod Lock, 23 Atherley Court, Upper Shirley SO15 7WG
d) Liam Cain, 8 Foxley Grove, Digswell AL6 0DW
e) Roger Williams, 53 The Greenway, Uxbridge UE8 2PL

COVER PHOTOGRAPHS

Top:
Manchester, July 02. MICHAEL EAST
Bottom Left: Manchester, July 02. PAULA RADCLIFFE
Bottom Right: Manchester, July 02. KELLY HOLMES
By Mark Shearman

PRINTERS

Beacon Printers (Penarth) Ltd.
Leyshons Buildings, Cornerswell Road, Penarth, Vale of Glamorgan CF64 2XS Tel: (029) 20708415
Fax: (029) 20703754
e-mail: beaconprinters@aol.com

Contents

Chairmans Notes

1Optimum Speed Distribution in 800 m and Training Implications
by Kevin Predergast1
An Altitude Adventure in Ethiopia by Matt Smith 5
End of "Pereodization" In The Training of High Performance Sport by Yuri Verhoshansky 7
A Coach's Vision of Olympic Glory by Derek Parker 10
About the Specificity of Endurance Training by Ants Nurmekivi 11
BMC Rankings 2002 23

GRAND PRIX PRIZES

A new prize structure is to be introduced for the 2002 Nike Grand Prix Series, which will increase the amount that athletes can win in the 800 m and 1500 m races if they run particular target times. The new structure aims to encourage athletes to go for fast times to help attract additional interest from good quality and overseas athletes.

THE GRAND PRIX PRIZES WILL BE AS FOLLOWS				
	First	Second	Third	Fourth
'Normal Time'	$£ 75.00$	$£ 50.00$	$£ 30.00$	$£ 20.00$
Elite Time	$£ 150.00$	$£ 100.00$	$£ 60.00$	$£ 40.00$
European Championships Qualifying Time	$£ 300.00$	$£ 200.00$	$£ 120.00$	$£ 80.00$
BMC Record	$£ 750.00$	N/A	N/A	N/A

The above amounts are 'total winnings' so for instance a male 800 m runner who wins in 1:49.1 would take home $£ 75$, if he ran $1: 49.0$ (the elite standard) he would take home $£ 150$. A 'Normal Time' is a slower time than the elite standard.
The BMC Record will be the time as at the day of the race and is the best time by anyone in a BMC race.

ADDITIONAL PRIZES

In addition to these prizes $£ 400$ will be paid for a performance by a non-winning athlete who runs a BMC Members record. This is the best performance by a paid up BMC member in a BMC race. This could be achieved by a second or third placed athlete who runs a members record in a race won by a non-member.
A $£ 100$ prize will be paid for a BMC Junior members record. This is the best performance by a paid up Junior BMC member in a BMC race.
Non-members who have not been especially invited as guests will have their joining subscription deducted from any winnings.
If an athlete has more than one performance in the same event on the same night then their best performance only counts for the prize money.

THE TIMES ARE:-				
	M 800 m	W 800 m	M 1500 m	W 1500 m
Elite Time	$1: 49.0$	$2: 05.0$	$3: 43.0$	$4: 20.0$
European Championships Qualifying Time	$1: 46.5$	$2: 00.5$	$3: 36.5$	$4: 06.0$
BMC Record*	$1: 45.2$	$2: 00.7$	$3: 37.5$	$4: 06.39$
BMC Members Record*	$1: 46.7$	$2: 01.93$	$3: 37.5$	$4: 06.39$
BMC Members Record*	$1: 47.69$	$2: 05.96$	$3: 42.2$	$4: 20.0$

*Records as at 17.4.02

Chairmans' Notes

It is very pleasing to report the many areas of progress that we have seen for the UK Middle Distance events during the 2002 summer season.

Some of the more notable include the highest standard in depth rankings over 800 m that we have ever seen for UK U20 Women, 3 UK women under 2 minutes in the Commonwealth Games 800 m Final, Michael East winning the Commonwealth games and the gradual progress that we are seeing in the senior men's 800m rankings.

The 2 races which saw the greatest progress by our men, Watford GP 800 m , and our women, Commonwealth Games 800m Final, had one thing in common. UK athletes were competing against international opposition. Unfortunately this is now a rare occurrence and although we are striving to offer this standard in our GP series it is difficult to achieve. The major reasons are financial but also the major influx

Optimum Speed Distribution in 800 m and Training Implications in S00m and ns

Kevin Prendergast, Australia

There is an ideal pace distribution for the 800 m that should result in an athlete's fastest possible time. According to the author's researches, that pace should be one of deceleration through successive 200 m segments. This article suggests training requirements to develop the relevant energy systems.

INTRODUCTION

The 800 m is a fascinating event, in the author's opinion the most fascinating of all. It is unique among the track events in that it uses all three energy systems intensely, and this also makes it complex and challenging to do properly. The three energy systems have different characteristics, particularly regarding pace and capacity, and making optimum use of each of them imposes a pace pattern on the performance.

by 800 m that should result in an athlete's

Dr. Norman Poole, Chairman
of European athletes that we had hoped for did not materialize and we will be discussing how to progress this situation with UKA during the coming months.

We have already requested, from UKA, 4-5 Saturdays for the 2003 GP Series since this is not only a strong demand of our UK members but also has an influence on the availability of overseas athletes.

To further progress the Men's 1500 m events we will also adopt a more effective means of pacing for the 2003 season. This will be further outlined prior to the start of the next summer season.

I also hope that the introduction of a BMC Men's and Women's 4 k X-C Champs at the Mike Sully Meeting in Bristol on $24^{\text {th }}$ November proves useful. This distance is probably more meaningful to the $800 \mathrm{~m} / 1500 \mathrm{~m}$ events and offers a useful guide to the progress of winter training. I hope that the event is popular and I look forward to seeing you there.

suggested to the Bristol club that they
restructure the meeting as a "short-course" festival. This was agreed and the BMC has stepped in to back this years meeting.
The two senior races will now be transformed into 4 k events with both having the status of BMS Championships. Mike points out that the women's event remains the same distance with the men's being

There really is not much variation on this pattern in top performances, though competition-type races can necessitate variations and athletes must be able to cope with these. Even so, such performances, while they can be racing successes, will not be the fastest the athlete is capable of.

TThe BMC will promote cross-country for the first time when they sponsor the new look Mike Sully and Gemma Butler races in Bristol on Sunday November 24th at 1 pm .
The traditional Bristol meeting, which has been run for some 40 years, was for a long time the premier csc event in the country before Xmas. But, since the meeting was excluded from the Reebok Challenge Series four years ago it has lost its status.
Attempts to revive it by staging it in conjunction with the Gwent and Avalon leagues have not met with success and the Bristol club faced with either abandoning the event or giving it a new face.
Our South West representative, Mike Down, who has long held the view that middle distance runners' needs and interests are largely overlooked by the winter programme, suggested to the Bristol club that they

Cross Country

reduced from 8 k . He , as the co-ordinator for the BMC, points out that with no significant 4 k 's before Xmas this event, if the distance is ever added to European Cross-country Championships, is ideally placed to act as a trial.
The races will be held at a new venue, the Bristol downs, which is within 2 miles of the city centre, in a fast 1 k course, and the hope is that the long list of distinguished past winners can be added to.

The prizes for the senior races will be the same as for the BMC GP, including veterans, with the U20 and U17:-also running 4 k , two U15:3k and U13 2 k .
"I am hoping we can also restore the reputation of the Young Athletes races, which used to be mini-nationals in the old days", added Mike. He goes on to say that he sees it as the natural winter sequel to our successful Millfield meeting. This is obviously a new venture for the BMC, and its future will depend on the success of the first event, so members are urged to put the date in their diaries. Mike is hoping to canvass all our middle-distance runners to support the event and ensure success. He can be contacted at 0117-9733407.

It will be argued, and rightly, that the ability to race is more important than the ability to run fast, but it is impossible to get away from the need to be able to produce fast times. For the best, fast times will produce records, and for the battler they will produce qualifying times for entry into major races and competitions.

Optimum Speed Distribution in 800 m and Training Implications (continued)

USE OF THE ENERGY SYSTEMS IN THE 800M

At the beginning of the race only the creatine phosphate (sometimes known as anaerobic alactic) system is used, because it the only one readily available. The lactic system takes longer to power-up, and the aerobic system longer still. Furthermore the creatine phosphate (CP) system is the acceleration system, which the sprinter uses to the utmost to propel himself to maximum speed. The 800 m runner also needs it to accelerate from standstill to his maximum speed for the race.

For the 100 m runner this system is on the wane after $6-8$ seconds. But by more judicious use of it the 800 m runner is able to extend the use to 2-3 times this duration. The amount and the duration of the acceleration for the 800 m runner will be discussed later in this paper. It is the most powerful system available to the athlete and can make a great contribution to a total 800 m performance.
The lactic system is the next to power up and by about the time the runner has finished with his CP system it is available to its maximum extent. It is not as powerful as the CP system, and therefore will not deliver as much speed, but has greater capacity, i.e., it can contribute more energy to the total performance.
As will be discussed in the next section, it has a declining output. It lasts longer than the CP system, but eventually it too is completely expended.
The aerobic system is the slowest to power up; it is the weakest, but it has the highest capacity. That capacity is barely tapped in an 800 m , but the system plays the vital role of propping up a fading lactic system. The better the aerobic system the faster the pace it can sustain, and so the more support it can provide to the lactic system. The more the race progresses, the greater the proportion of the total power that comes from the aerobic system. A weak aerobic system will cost a runner dearly in the final stages of the race.

OPERATION OF THE LACTIC ENERGY SYSTEM

All energy systems are important in 800 m running, but the lactic system provides the key to success. It is the link between the powerful CP system and the enduring aerobic system. A defining characteristic of the lactic system is that its output decreases with use. The longer an effort powered by the lactic system continues, the less the output from the system. It chokes itself off, because the by-product of the operation of the system, lactic acid, inhibits the operation. Eventually the muscles becomes so saturated with lactic acid that the system is no longer operable.
Furthermore not only does the duration of effort bring about a build-up of lactic acid, so does the intensity of its use. The faster the pace powered by the lactic system the faster the build-up of acid, and the sooner the operation of the system is at an end. It is a matter of fine
judgement to pour out the lactic energy at such a rate that it lasts long enough.

We have to distinguish between the maximum available speed under the operation of the lactic system and the speed the system is actually producing. The maximum available speed falls as the build-up of lactic acid chokes off the power producing ability of the system.

The author has done some mathematical modelling of the lactic system that shows a critical point is reached when the maximum available speed falls to the speed actually being run. At this point the running speed falls sharply, in what a mathematician would call an exponential decline.
The equation describing this is reproduced below for those interested.

$$
v=v_{a}+\left(v_{t}-v_{a}\right) e^{-k t}
$$

where v is the actual speed at time t after max available speed falls to running speed;
v_{a} is the speed sustainable by the aerobic system;
V_{t} is the speed (terminal speed) when max available speed equals actual speed;
k is a constant.
The above equation describes what every enthusiastic middle distance and 400 m runner knows only too well-when the bear jumps on your back, no amount of effort or courage will stop your speed from collapsing dramatically.
From the above we know that this point of terminal speed must not be reached before the end of the race. However not to be near this point by the end means that the lactic system has been under-utilised and the performance cannot have been optimum. The aim then is to reach terminal speed at the 800 m mark.
Basically there are two possibilities for achieving the above. The first is for the entire sector of the run powered by the lactic system, i.e., after the CP system has finished, to be at constant pace, and for this pace to be the terminal speed. The maximum available lactic speed declines linearly throughout the run until at the 800 m mark it reaches the constant running speed.

The second possibility is for a gradual decline in running speed until at the end it meets the maximum available speed. (The third possibility of an acceleration during the lactic phase is discounted as being impractical as it involves accelerating, decelerating, accelerating.)
Some further mathematical analysis by the author shows that for all runs powered by the lactic system, the optimum strategy is for a deceleration during the lactic phase, rather than constant pace. This is pronounced for the 400 m and 800 m , but for longer events the theoretical advantage becomes insignificant, and practicabilities tend to swamp any possible advantage.

The above two pieces of mathematical analysis
of the operation of the lactic system are in a work yet to be published by the author.

SOME HISTORICAL CONFIRMATION OF OPTIMUM STRATEGY

There is some, though not conclusive, historical evidence that deceleration is the best strategy for fastest time. It is in the form of 22 great performances between 1:41.73 and $1: 43.50$ and they were chosen for no other reason than that they were available to the author. There have been 51 performances in total in this range, so 22 represents a reasonable sample, and it is reasonable to regard them as representative of the total, particularly as the story they tell is very consistent.

The first lap and second lap speeds as a percentage of the 800 m average speed were determined for each of the 22 performances, and they are shown in Figure 1. It will be seen that for 21 of the 22 performances the first lap was faster than

Figure 1: relative first lap and second lap speeds of $\mathbf{2 2}$ outstanding performances.
the second. The only exception was Steve Cram's win at the Commonwealth Games in 1986. It was a remarkable performance by an athlete who was more a 1500 m and mile exponent, and he ran the race that way. Significantly he had two faster performances, both recorded in the graph, and in both his first lap was faster.
The average of the first 400 m speeds is 101.7%. If Cram's unusual run is omitted the average rises to 101.8%. There is a heavy cluster of performances about this percentage. For a 1:43 performance this means a first lap of 50.6 and a second lap of 52.4 , a differential of 1.8 sec . It would seem that if there is an ideal to aim for, it is this $101.8 \% / 98.2 \%$ split with respect to the average speed of the goal performance.
The above does not confirm that the lactic phase is one of deceleration, because all of the difference above in the speeds of the two laps could be in the CP phase. However 200m splits from four of the best of the above does provide some confirmation. It is far from conclusive but does point in the right direction. The splits are reproduced in Figure 2.

More than the above would be necessary to be able to say something definitive from an historical point of view. However it does suggest that if there was an ideal to which the athletes were running, it was one of a big falloff in speed from the first 200 to the second, a holding operation from the second to the third, and then the inevitable fall from the third to the fourth.
The overall trend is certainly one of deceleration from the first 200 m and this is consistent with the first lap/second lap deceleration of the much larger sample. Deceleration throughout the last 600 m seems a reasonable ideal on which to base a strategy.

USING THE CP ENERGY SYSTEM

Now that we know that the optimum strategy for the lactic phase is gradual deceleration throughout, we can determine how to use the CP system to lead into it. The gradual deceleration throughout the lactic phase indicates that the CP system is not required during this phase and it can be expended as much as possible during the first part of the race. How much is as much as possible? Obviously it cannot be anything like a maximum 200m effort.

There are three considerations. The first is that we want the CP effort to last as long as possible, so as to put a lesser requirement on the lactic system. There is evidence that the system can last for much of the first 200 m if used judiciously. That means gentler acceleration than in a sprint, holding speed for longer.
The second is that we want good speed, because this is where the cheap gains in overall time are going to come. This is a contradictory demand to the first, because it calls for high acceleration, so some trade-off is necessary.

The third is that when the CP phase is coming to an end and the lactic system is the predominant provider of power we do not want too high a speed, because the lactic system will not be able to sustain it without a rapid buildup of acid.

All of this means that we need an acceleration that is well within the runners' capability. Then he must remain effortlessly near the speed attained for longer than a sprinter remains near his top speed. Perhaps something like 100 m is desirable. This is possible if the acceleration has not been severe.

Figure 2: $\mathbf{2 0 0} \mathrm{m}$ splits as percentage of average pace for four great performances.

Then, as the 200 m mark is approaching and the CP system is well on the wane, it is necessary to ease off, so that the runner is left with a speed that the lactic system can handle.
The logic of all of the above and the experience of international elite 800 m runners would suggest that a first 200 m time of $88-90 \%$ of best possible 200 m is the aim. This means that an 800 m runner capable of 21.6 sec would run the first 200 m in $24-24.5$ sec . The slower time is probably closer to optimum but circumstances often necessitate the faster effort.

PACE DISTRIBUTION

As we saw above, the optimum strategy during the lactic phase, which basically is from 200 m to 800 m , is one of gradual deceleration. A reasonable first pass at a model is one based on a fall in speed of 2% per 200 m . This would have the 200 m sectors at $88 \%, 86 \%, 84 \%$ and 82% of best 200 m speed.

With respect to the average speed based on 800 m goal time, the model would be 103%, $101 \%, 99 \%$ and 97%. The 2% per 200 m deceleration fits well with twin requirements of beginning with speed that the lactic system can manage and delivering a good yet credible time for the last 600 m .

However this is quite conser-vative with respect to CP perfor-mance of elite runners. They tend to go quicker in the first 200 m than indicated by the above model. Then they quickly come off that speed and the second 200 m is about 5% slower, so they do not get hung up on a pace that the lactic system cannot sustain.

Holding to the gradual deceleration strategy, the deceleration from the second to third 200 and from the third to fourth 200 would be about $1 / 4 \%$ per 200 m . A better model in terms of average speed for the goal time is:
first 200
104.50\%
second 200
third 200
99.25\%
fourth 200
98.50\%
and in terms of best 200 speed:

first 200	89.00%
second 200	84.50%
third 200	83.75%
fourth 200	83.00%

This model produces the first lap/second lap differential that is the average of the 22 performances above.
A brief mention is necessary about the apparent accuracy of the above percentages. For instance 83.75 seems exceptional accuracy, almost 1 in 10,000-more than is possible for a runner to judge. However 83% is not particularly accurate-it has a possible error of 1.25 sec in an 800 m run. 0.25 is not meant to signify accuracy to the second decimal place, but rather the accuracy entailed in going to the nearest $1 / 4$ of a percent. Going down to 0.25% reduces the possible error to 0.3 sec in 800 m , or about 0.1 sec in a 200 m sector.
To put the above in context, let us consider a runner aiming to run $1: 46$. The 200 m splits according to the model would be: 25.3 sec ; $26.7 \mathrm{sec} ; 26.9 \mathrm{sec} ; 27.1 \mathrm{sec}$.
Before we go on to consider training implications of this pace distribution, it is instructive to look at the best and the worst of pace distribution. This occurred in the one race the final of the 1988 Olympic 800m. It is shown in Figure 3.
Kiprotich was presumptuous in going out that fast and trying to hang on to the speed. His best going into the Games was more than a second outside the winning time, and he had no significant background in 400 m running. It was inevitable that he would accumulate too much lactic acid early and go into dramatic speed collapse well before the finish, and he did.

The winner, Paul Ereng, was a different story. Like Kiprotich he was a Kenyan but he had gone to a U.S. college as a 400 m runner, so he had a good CP system. Nevertheless, he was foolhardy in the Kenyan trials and went out far too fast. He went through 400 m in 49 sec and 600 in $1: 14$ before the inevitable happened. His last 200 m took 31 seconds as he was passed by one, then another runner. He just hung on for third and a chance to run at the Olympics. However, he learned his lesson and his run in the final at Seoul was a model of sensible distribution of energy.

Figure 3: The best and worst of 800 m pace distribution.

TRAINING IMPLICATIONS

THE CP SYSTEM

The model arrived at above has the first 200 m at 104.5% of average speed for goal time. Given that life is not perfect and he might have to run faster for position, the runner must be able to run the first 200 m at 105%, and this must be comfortable. Indeed we saw above

that Cruz and Gray went at 106%, but perhaps this is not something to be copied by lesser mortals until 105% is mastered.
105% can only be comfortable if it has insignificant lactic content, so it must be a CP effort. The system must last for most of the 200 m , and it must deliver a speed that is 105% of goal average pace. That requires some training.
If we look at 1:46.0 as the goal time (providing it is not a presumptuous goal), the average 200 m speed is 26.5 sec . This requires the athlete to be able to run the first 200 m comfortably in 25.2 sec . The comfort margin will be provided by the athlete being capable of $22.5-22.7 \mathrm{sec}$ for 200 m . This is in conformity with the speed implied in the model in terms of 200 m capability (89% for first 200).
Such running is quality speed-it is about 92% of a 200 m performance of comparable standard to 1:46. An 80Om runner will need to train for it. It is the same at every other level of performance-the first 200 m requires the athlete to be well equipped for speed relative to that level.

The first requirement is to improve maximum speed. We want to increase the stores of creatine phosphate in the muscles and we do this by stressing the system that uses them. This stress is provided by full speed sprint work, like flying 60 m repetitions.
When the stores are increased, i.e., when the speed is good, we do something about lengthening it. This is another way of saying that we cannot have speed endurance unless we have speed. The lengthening is accomplished by moving the distance out to 100 then 150 m . All the while the emphasis is on the efforts being smooth and relaxed.
When long speed has been well developed it is time to move on to 200 m repetitions. These should be slightly faster than the 105% of goal average pace, say about 110%, so that 105% will come easily. The repetitions should be relaxed, not flat-out, and the athlete should be still full of running at the end of each. They should become second nature, so that the right speed for the first 200 m of the race comes quite naturally. After the preparation outlined here this will be quite possible.

THE AEROBIC SYSTEM

The aerobic system does not work by itself in a properly run 800 m , and it is not the predominant energy system. Nonetheless it is vital, and it must be a good system. The difference $\left(\mathrm{v}-\mathrm{v}_{\mathrm{a}}\right)$, where v is actual current running speed and v_{a} is the maximum speed the aerobic system alone can sustain, is very important. It determines the amount of lactic acid produced. Obviously for a given speed v , the higher v_{a} the less acid produced and the longer the lactic system lasts. The 800 m runner needs a high value of v_{a} and cannot ignore this aspect of preparation.
The way to increase v_{a} is to do long continuous runs at very slightly above maximum steady-state pace. Maximum
steady-state pace is about marathon pace, so a little faster is not very fast and can be continued for some time-an hour would be reasonable. Having the pace just above maximum steady-state pace stresses the body a little but manageably, and causes it to adapt so that it can handle the pace in steady state mode. Thus v_{a} has been lifted.
A fundamental factor driving the aerobic system can also be improved, and from that will come an increased v_{a}. That factor is the amount of oxygen the lungs can take in, and it is known as the maximum oxygen uptake. Obviously the more this is, the greater the rate at which glycogen can be consumed and the greater the power from the aerobic system. A maximum effort of 6-10 minutes achieves the maximum oxygen uptake. A typical session would be $2-3 \times 3 \mathrm{~km}$ with jog recoveries of similar duration. The speed is above maximum steady-state pace, but not appreciably, so the accumulation of lactic acid is not great and jogs of this duration will be sufficient to allow repeats of the same quality. Progress is by continual small increases in the speed of the runs.

THE LACTIC SYSTEM

The performance we want from the lactic system is to sustain the effort for $75-90$ seconds (depending on standard), allowing only a modest drop-off in speed. The speed we want from the system, according to the model, is $99.25 \%, 98.5 \%$ and 97.75% of goal average pace for the second, third and fourth 200 m sectors. Put less accurately but more realistically, we want 600 m at about the same average as the goal for 800 m , sliding from a few tenths of a second above the pace for the first 200 m to a few tenths below for the last 200m. This requires a well developed lactic system.
As with any of the energy systems, there are two aspects-power and capacity. The first determines how fast and the second how much, or how long. The faster the speed available from the lactic system the higher the running speed can be without the athlete reaching speed collapse before the finish.

So we are interested in developing a powerful lactic system. This is achieved by doing very fast 300 m repetitions with as much recovery as possible. The first part of each repetition exercises the CP rather than the lactic system, but there is no way of avoiding this.
Capacity of the lactic system is even more important than its power, because the system must last to the finish. One way this can be developed is by extension of the above 300 m session. 5×300 becomes 4×400, then 3×500 and finally 2×600. From a good speed base the athlete gradually drops his speed and extends the distance.
As with the 300 s, there is a problem in that the effort is aided by the CP system in the early part of the repetition. There is no way the CP component can be taken out. To compensate for this the repetitions should be faster than the lactic system would deliver. So the 600s should be above goal average pace.
For instance for a 1:46 runner, for whom goal pace would be $1: 19.5$, a challenging but reasonable target would be two 600s averaging under 1:19.0.

There is a way of removing the assistance provided by the CP system, and thus making the lactic system work harder. This is by means of sets of 3×300 with very short recoveries within the set. If the recoveries are less than three minutes the CP stores in the muscles are not completely replenished. The second and third 300 are run with only partial replenishment of CP , and there is more demand on the lactic system. The idea is to run the first 300 m at the pace of the first 300 m of an 800 m , and the second and third at the sliding pace of the last 600 m . Recoveries could start at 2 minutes, and progression would be by shortening recoveries.

CONCLUSION

By looking at the 800 m event from a theoretical and historical perspective, we are able to see the requirements on the three energy systems and consequently the optimum pace structure of the event. This leads us to decide the essential training elements for the event.

An altitude adventure in Ethopia

by

Matt Smith

"Haile! Haile! Haile!' chanted the children of Addis Ababa as I took my daily runs at high altitude around the hills and trails of the Ethiopian capital city. Day upon day of my three week December stay I was left in no doubt that my trip was an inspiring opportunity to live and train in the land of Haile Gebrselassie, the double Olympic $10,000 \mathrm{~m}$ champion and hometown hero to the people of Addis.
It is no secret that the world's best endurance athletes are all either born or trained at high altitude venues. Britain's Paula Radcliffe is well known to have perfected her World Cross Country winning preparations at altitude in Albuquerque, New Mexico, in addition to using Font Romeu as her French altitude base over several summers. But particularly fascinating to athletics fans and competitors alike has been the dominant influence exerted by African athletes on the distance running world. Ethiopia especially has produced many Olympic Champions including Haile, Miruts Yifter and Abebe Bikila.
My invitation to stay with current Addis Ababa resident and British former Olympic marathoner Richard Nerurkar gave me a wonderful cultural opportunity to meet, train with and learn from Haile in his ideal and inspiring high-altitude home training environment, where the sun shines in December and all that seemed to be absent was oxygen. I might have left it a little late to be altitude born, but this trip was my chance to be altitude trained.

Situated at close to $8,000 f t$, Addis Ababa is higher than many of the pistes used for downhill ski racing in Europe. The city lies in a bowl surrounded by mountains and so most runs rise from this elevation. Many beautiful trails are found at $10,000 \mathrm{ft}$, which is not significantly below the height of base camp on Mount Everest, and therefore perhaps not the easiest location for me to seek to match strides in training with "Superman'.
"Superman' is the label bestowed upon Haile by Brendan Foster, following Haile's victory in the Great Ethiopian lOk Run in November. The overwhelming recent success of the race, for which Richard was the Local Event Manager, made this a perfect time for me to visit Addis Ababa.
Inspired by Haile, who is a charming, friendly and enthusiastic symbol of success and stardom, an estimated half a million people lined the streets of Addis to watch their champion overcome 10,000 competitors and storm to victory along his self-titled street, Haile Gebrselassie Avenue.
One week on from the race and this good feeling was transmitted to even a white western runner like me, encapsulated in almost endless shouts of support offered throughout every training run I embarked on in Addis, and, as anyone who has run at $8,000 f t$ will testify, encouragement provides much welcome inspiration during any run at this elevation.
"Ambassa!' shouted some small chlldren, using the Amharic word for 'Lion', as I ran past them on just my second day at altitude. I certainly didn't feel like much of a lion as I began to ascend the sixth and longest hill of my ten mile run, but I managed to respond with an almost convincing spurt of speed. The hill spiralled up from the outskirts of Addis, across the prevalent bright red sandstone rock, heading towards a far off clump of resilient Eucalyptus trees that marked the top of the climb. Quads burning, breathing heavily and pace slowing, I silently implored my red blood cells to hurry up and multiply as part of the acclimatisation process.
`Faranj! Faranj!’ - meaning `foreigner' in Amharic - is a call I'd hear at least thirty times each day from locals who were excited and surprised to see a white runner. Minority status is guaranteed to generate a degree of interest unlikely to be experienced (or condoned) in non-African countries.

Indeed it's not unusual for youngsters, thrilled to see a westerner out training, to enthusiastically join in with the run for maybe a few hundred metres, even when this necessitates them completely changing the direction in which they were heading. The children easily forgo any activity they were engaged in, for time exerts little pressure on an Ethiopian's largely empty daily schedule. Many people appear to be just hanging around and watching the world pass by.
`Hey, you! Hey, Haile! You!’ squealed a group of small boys as one of their pals joined my run one other afternoon. Perhaps three or four years old, he sprinted desperately to keep up for thirty metres or so, which was as far and as fast as he could run with me. His jacket was flailing in the wind and his arms were pumping fiercely, barely able to keep up with his little legs: A wonderful experience to share... providing the budding Olympians don't keep up for too long and put a dent in one's confidence!

By the middle of my stay, and thankfully much more acclimatised, I stood early one morning looking across a field of sun-scorched grass. My watch said the time was just before half past six and snaking smoothly in my direction was a long train of over a dozen Ethiopian distance runners. Leading the line of illustrious athletes was my running partner for the morning, the leader of the Ethiopian training group and a man keenly preparing for his April debut in London's marathon; one Haile

Gebrselassie.

Among those joining us for the run were Tesfaye Tola, who narrowly defeated Jon Brown to earn the Olympic Marathon bronze medal in Sydney, and Tesfaye Jifar, who ran 2 hrs 7 mins to win last November's New York City Marathon. The other dozen or so guys in the group were slightly lesser standard athletes who could merely muster maybe 27.30 for 10,000m!
Twelve miles, several hills and a little less than seventy minutes later, the run was happily completed. I'd probably added a few more red blood cells to my expanding collection, and the quality of my training companions had undoubtedly increased my levels of inspiration.

Similarly motivated and doubtless drawn to the sport of distance running by the impressive exploits of their trailblazing and allconquering countryman, elsewhere the same morning the $5 \mathrm{~km} / 10 \mathrm{~km}$ group were also training together. This group included Olympic 5000m champ Million Wolde, World 10,00Om silver medallist Assefa Mezegebu and rising young star Kenenisa Bekele, who went on to win the 6reat North Croas Country in Newcastle before the end of 2001.
The training schedule of the top Ethiopian runners is tightly controlled by coaches from the National Federation and it is required that all members of the National Team are based in Addis. The training structure for the marathon squad calls for hard workouts thrice weekly. Haile runs thirteen times each week and, unlike in fabled Kenyan squad systems, the Ethiopians see no need to run three times in a day. Hard sessions typically comprise a 20 30 km tempo run or long track or hill repeats. These efforts are very hard and, not least because the hills and high altitude provide a degree of stress at any pace, easy runs are often
run quite slowly.
"Today we are walking,' Haile advised before we did one easy afternoon run. He was not wrong for we proceeded to jog for 32 mins and covered barely four miles. Yet, even at this slow pace, and with other Olympic medallists in the group, still no one deposed Haile from his position of pacemaker. I think Haile could alternate ten minute and five minute miles and, such is his status, Haile's training partners would not fail to follow his lead.

By the end of this jog our eight strong group had approximately doubled in size with the acquisition of various passers-by, drawn from their daily business by this latter day Pied Piper of Addis. One latecomer was a young guy dressed in jeans and a denim jacket and, although breathing very heavily by the end of the run, he succeeded through determination and motivation to keep pace with Haile, the national talisman. But this is not to sugqest training for the Ethiopian squad is anything other than serious business. Instead, the relaxed pace of their easy runs indicates they have enough confidence in their fitness to allow their bodies full recovery whenever they feel it is necessary.

Runs in Addis typically finish with some relaxed stretching and lots of laughing end joking. A common topic of conversation among the group concerned the London marathon, not least following the recent confirmation that Ethiopian World and Olympic Champion Gezahenge Abera had just been added to a field that already includes Gebrselassie, Jifar and Tola. Expect to see these guys at the front of the field, sprinting to earn the victory and the title of unofficial Ethiopian marathon champion.

Working at altitude I soon learned the pace and distance of runs are much less significant indicators of effort than they are at sea level. At high elevation, hills and altitude are the stressful stimulators that trigger improvements in fitness. But as days passed and I became
more acclimatised, I was able to ascend hills far more easily and I was much more able to enjoy the feeling of freedom and escapism afforded by running along ridges at the top of the world, beneath bright blue sky on scorched grass trails.

Yet it's wise to keep a couple of faster gears in reserve, as Richard discovered one morning run when he disturbed a bull on its way to market and caused the animal to make a halfhearted attempt to 'butt' him. Fortunately, Richard managed a swift sidestep and so evaded the bull's best efforts. This incident highlights one of the charms of my trip; the differences between life in England and Ethiopia.

Bulls, donkeys, goats, rams and oxen are all regulars on the Ethiopian streets, mixed among hundreds of people from schoolchildren to strollers and beggars in what is a truly vibrant outdoor society. Chaotic traffic comprising noxious burnt orange school buses, blue and white Lada taxis and Toyota minibuses all weave fearlessly down and, occasionally, across main streets. VW Beetles and rotary dial telephones are envy-inspiring possessions in Addis despite the fact these items are so outdated that they are considered kitsch in England. However, almost unbelievably, during my first ten days in town I was shocked to spot almost a dozen old-style Manchester United jerseys.
Football, somewhat surprisingly given the athletic success of Haile, Derartu Tulu and others, is said to be the national sport in Ethiopia. During one run across a plateau at close to 9000 ft , in an area all but devoid of homes and people, I ran past what must be one of the remote soccer games in the world. There two infant brothers were fiercely contesting possession of a `ball' made up of rags and clothes bound together, from which one or two old socks seemed to be escaping, while their smaller sister guarded a goal which had piles
of stones instead of goalposts.
But perhaps the most striking and impressive aspect to life in Addis is its incredible mountain top views. Running one Sunday from the old Ethiopian capital of Intoto, halfway through a 15 mile trail route at an elevation of $10,000 \mathrm{ft}$ and above, I rounded a copse of trees to be faced with the stunning expanse of the great African Rift Valley. Perhaps 2000ft below the ridge on which I ran, the green and gold fields of the Rift Valley rolled out for an imperceptibly huge distance, blending somewhat seamlessly into the skyline hundreds of miles ahead. It was a privilege to witness such a great wonder of the world and the spectacular scenery comfortably compensated me for the considerable effort required to run at $10,000 \mathrm{ft}$.
"13 months of sunshine' is the slogan of the Ethiopian Tourist Board and never did the shivering streets of London feel so far away. To see such beautiful surroundings in a month when the climatic difference between England and Ethiopia is most marked made many days truly memorable. The British winter demands waterproofs, tights and extra tracksuits and this contrasts sharply with shorts and sunshine in Addis.
Training in Ethiopia may be slightly uncharted territory for many runners but I have learnt that Addis Ababa can be an incredibly fulfilling and exciting place to live and train. The altitude is too high for mosquitoes to survive, so there is no malaria in Addis. The favourable exchange rate and low cost of living in Ethiopia mean this type of training trip is an opportunity available to all or, at least, all who like the idea of freedom and escapism, of running in sunshine on hills and trails against a backdrop of spectacular scenery, mixed with a little sweat and a lot of encouragement.

Believe me, it's a lot more fun to go running and hear people shout 'Haile! Haile!' rather than, as is the case in London, yell 'Run Forrest, Run!'

LETTER TO THE EDITOR

Dear Frank,

Reading your letter in AW of 19th June ("Endurance Solutions") about who uses Coe's training system nowadays, some years ago I attended a training day where you were guest coach. I asked about your 5-pace system and you were kind enough to write to me explaining it.

I now coach a 14-year old girl who when she joined our club had a 1500 best of 5.25 and hadn't done 800.She was able to train twice a week. Last season I started her off with 1500 pace sessions on Mondays and 800 pace on Wednesdays. By the end of the season, still only 13, she was English Schools' 1500 bronze medallist with 4.38 .47 and her 800 time was 2.15.3.

This season I expanded the training to bring in 3 k and 400 pace sessions, spread over a fortnight. She is now English Schools' 1500 Champion with 4.30 .43 (8th on UK all-time under- 15 list) and finished $2^{\text {nd }}$ in AAA's Junior 800 with 2.11 .29 (fastest in UK this year).

So, returning to the question of who uses Coe's system now? Answer: thanks to you, I do!
Yours sincerely,
Nick Nicholson
Endurance Coach
Dorchester AC

End of "Periodization" In The Training of High Performance Sport

by
Yuri Verhoshansky, Russia

A well-known Russian sport scientist questions the validity of Matveyev's theory of periodization. He provides detailed criticism on why the concept is out of date and unacceptable for contemporary training concepts.

1. MANEYEV'S CONCEPT OF "PERIODIZATION" FACES CRITICISM

The methodical principles of contemporary training systems are in large part based on the work of Russian coaches of the early 1950's, when the former Soviet Union prepared for its first participation in the Olympic Games (Helsinki, 1952). The preparation was based on the information collected by L.P. Matveyev at the Moscow Institute of Physical Culture. It was published as a theoretical concept known as "periodization" in 1965.

Matveyev's concept attracted attention outside the Soviet Union, because training theories had at this point not yet involved scientists, and the successes of Soviet coaches and athletes on the world stage were exceptional.
The periodization concept eventually became a synonym for "planning of training." Many specialists even today use this concept in progressive presentations of the organization of training. However, the majority have found in practice that the theory of periodization is not acceptable and it has been criticized at home, as well as internationally.
Many experts today consider that the antiquated theory of periodization does not meet the requirements of contemporary sport and can have a negative influence on performance development.
It also appears that periodization does not present a model training system for elite athletes within the demands of modern competition calendars and other international development tendencies. Only some aspects of periodization theory can now be applied to the training phases of young athletes.
It is now evident that a formal, mechanical division of a training year into periods and mesocycles is not practical. Further, the principles of periodization are not really reliable because they are based on relatively thin research and from experiences assembled in the early days of the Soviet training system in the 1950's.
Many publications draw attention to the fact that the methodical recommendations of periodization theory are not sufficiently concrete and fail to meet the demands of contemporary high-performance sports. This applies in particular to sport games, endurance sports, speed events in track and field, and so on. Periodization also fails to provide acceptable methodical recommendations for the improvement of specific conditioning and final competition preparation.

Endurance sports experts are most critical about Matveyev's periodization theory. A very dynamic organization of training loads has been gradually eliminated in these sports. Coaches still following the outdated elements of periodization find it extremely difficult to keep their athletes in top form throughout the competitive season.
Attention should also be paid to the fact that the successes of African athletes (particularly Kenyans) can be explained not only because they live at altitude, but also because they have rejected the theory of periodization in the planning of training.
British coach, Frank Horwill, in an article titled "Periodization-Plausible or Piffle?" claims that the theory of periodization is unsuitable for modern running training. He also states that neither the former Soviet, nor the West European runners (male), have broken world records in middle distance running or won Olympic gold medals over the last 30 years. At the same time, British athletes, who have not followed the Russian concept of periodization, have achieved such performances. Nevertheless, British athletes began to follow Matveyev's theory since the 1980's and their performances have since shown a backward trend.

Zanon of ltaly, a well known expert of the Soviet Union's training doctrine from 1960 to 1980, has now rejected Matveyev's periodization principles, because "when a training concept is not based on biological fact-as it happened in the Soviet theory-but on theoretical suppositions without a correlation to realistic conditions, it can be expected that the corresponding training programs will lead to a loss of sporting talent."
I don't agree with all of Zanon's s arguments. He has several inaccuracies in the history of periodization, as well as theoretical and practical interpretations of periodization. He also confuses Matveyev's concept of periodization with the Soviet training system, of which only some coaches have followed the concept.

Peter Tschiene of Germany, in an analysis of several training concepts (1985), comes to the conclusion that Matveyev's periodization theory has remained unchanged since its publication in 1965, although enormous changes have meanwhile taken place in sport.

It is therefore hard to understand how Matveyev overlooked the increasing difficulties occurring in the use of his training structures in such activities as, for example, all
sport games. Tschiene (1990, 1991) recommended that the periodization theory of a yearly training cycle must be reformed and changed to a modem concept based on substantiated principles that take into consideration the role of competition and individualization.

Matveyev's textbook on periodization was never translated into the Italian language. Nevertheless, it was severely criticized in a paper distributed to sporting organizations, sport medics and provincial sporting authorities by the Italian Olympic Committee (CONI) in 1978. The aim of this critical analysis was to provide coaches revised information on training concepts. Particular attention was drawn to the lack of reliability and effectiveness of Matveyev's theory in the training of swimmers, weight lifters and track \& field athletes (running).

The information stressed that Matveyev's findings dated back to the time between 1950 and 1960. Obviously training methods have enormously changed since then, reflected in numerous new records. Several new dominating training concepts, based on sport science studies have emerged and modified old approaches to high-performance training (Bellotti, et al. 1978).

The rejection of the periodization concept was even more categorical in Russia, where the former Vice President of the State Committee of Sport, Kolessov, declared that participants in high-performance sports "should not continue to follow the outdated system of Prof. Matveyev (Sovietsky Sport 1991).

2. REASONS FOR THE BREAKUP OF THE PERIODIZATION CONCEPT IN TRAINING

It hardly makes much sense today to analyse the theoretical weaknesses and clearly senseless methodology of the periodization concept. We will therefore follow only the major scientific factors involved to avoid a repetition of similar attempts in the future.
Disregarding New Biological Understandings It is a grave mistake to overlook biological knowledge and achievements of sport sciences. In these days it is not necessary to convince anybody about the value of "biological components" in the theory of training (Verhoshansky 1993,1996,1998). However Matveyev maintains that the biological laws do not determine the macrostructure of training and the
development of form is rather guided by other laws. He desperately attempts to overlook the process of performance development from the position of adaptation and refuses to acknowledge the priority of "biological components" in the theory of training.
Matveyev agrees in reference to the theory of adaptation that "adaptive processes play a certain role in the reconstruction of the organism through sporting activities," but claims that adaptation is only one aspect in the improvement of performance.
"The priority of the interpretation of the processes involved in the perfection of sporting performances and related phenomena should not be regarded as the theory of adaptation but the theory of development." (Matveyev 1991).
This picture shows a lack of scientific seriousness and the impossibility of developing periodization further on scientific principles.

"Missing legalities" in Training Concepts

The methodological and scientific untenabilities of periodization become obvious in the terminological chaos of scientific principles, directions, and the like. This chaos occurred from a strange and uncompromising search for legitimacy in the concept of Matveyev's theory of periodization.
Matveyev claims that periodization principles "express the biological legalities of adaptation in training" (Matveyev/Meerson 1984). This was a strange declaration because it is known that training processes are based on subjective concepts of their contents, structure and temporal sequence. There are no "legalities." At best we can only talk about methodical rules in training, which are formulated according to empirical data.
The logically speculative presentation of training and competition without objective evaluation led the concept of periodization to an "unseparable correlation between the general and specific preparation of an athlete" (Matveyev 1991). To this were added other similar "legalities," such as the "cyclic character of training, a wave-like formation of training," etc. At this time it was already known that progress in international highperformance sport was tied to more farreaching and complex factors than periodization theory allowed (Jakovlev 1976, 1993; Kassil, et al. 1978; Sergeyev 1980; Verhoshansky 1988; Viru 1994; Booth 1988).
It is understandable that such a confusion of "legalities" also was responsible for producing confusing "principles." An analysis of 17 textbooks conducted by the Institute of Physical Culture in the former Soviet Union showed that the authors failed in most cases to see differences between the principles of training systems, general pedagogical aspects and specific principles in training (Galkin 1988).

A lack of scientific foundation was responsible for a multitude of contradictions in the theory of periodization. This makes it unusable as an instrument for the organization of training and actually prevents further developments
(Ballotti, et al. 1978; Horwill 1992; Zanon 1997).

Disregarding the Biological
 Adaptation Process

Matveyev's speculative conception was based on a phasic development of top form. A dynamic development of sporting form was introduced by Letunov (1950 and Prokop (1959). They were the first sports medicine specialists who formulated ideas that the improvement of the
 training state of an athlete is based on the biological laws responsible for the development of adaptation processes in training. They arranged these processes into three phases:

1. Improvement of the training state;
2. Sporting form;
3. Drop in the training state (according to Letunov)
Or
4. Adaptation;
5. The highest practical performance capacity;
6. Re-adaptation (according to Prokop).

However, it appears that Matveyev failed to understand the biological ideas of Letunov and Prokop. This appears to be the reason for his primitive "pedagogical" interpretation of the nature of training. Matveyev merely changed the nature of training phases and maintained that his phasic development of form is the n a t u r a 1 assumption for $\mathrm{t} \quad \mathrm{h} \quad \mathrm{e}$ periodization of training. It is easy to recognize that this concept of training, from the viewpoint of the "dynamics of the sporting form," gives only
superficial picture and is today regarded as naive.

Figure 1: Examples of "exact analytical calculations" of the "dynamics of sporting form" (SF) according to the method of Matveyev (1991).
laws covering long-term performance development and the morphofunctional specialization of the organism. Although Matveyev made use of the contributions by Letunov and Prokop, he based these on a scholastic level, without perspective (Tschiene 1991; Selujanov 1995; Zanon 1997).

Lack of Scientific Method

Matveyev's methods in The Concept of Periodization, as well as in The Foundation of Training in Sport, are rather primitive. They cover the so-called pedagogical observations and antiquated analytical-synthetical principles. But in an attempt to counteract the lack of scientific principles in these methods, Matveyev presented in 1991 a careful analysis to support his concepts. The analysis showed a lower limit of 1.5 to 2% in the range of $\mathrm{t} \quad \mathrm{o} \quad \mathrm{p}$ performances. Deviations from personal b e s t performances w e r e calculated to be 3 to 5%, in cyclic speedstrength e vents. Athletes were regarded to be out of form under these limits.
The calcula t i orrs followed a simple graph o f performances (fixed by points) which was based on a percent time system. The absolute personal best performances were set as 100%. By the way, from this developed his concept of a "wavelike format" of sporting form. Somehow Matveyev failed to take notice that a large part of top-form performances were below his
critical range (see Fig. 1).

The Principle of Periodization Does Not Correspond to the Reality of Training and Competition

The first obvious criticism by specialists and practitioners concerns the essence of periodization in the formal and mechanical formation of training processes into subjectively formed parts/cycles, phases, periods, etc.). This according to Matveyev is the essence of periodization.

His argument is very simple in that the development of performance can't be acquired and maintained outside these nor can optimal training processes be constructed for development of form. Any other approach would contradict the objectivity of the construction of training. (Matveyev 1971).
The mechanical formation of training processes and their later reunification to some adaptive entirety has, first of all, nothing in common with a realistic organization of training in most sports. Secondly, this formation neglects objective adaptation processes. It simply does not even replace training control through different trial and error methods because periodization offers no objective confirmation for the choice of an optimal variation.

A formal observation of the so-called "laws of the development of sporting form" was responsible for an incorrect introduction of preparation and competition periods. This linear logic of first training and then competition simply failed to relate to objective realities and gave coaches and sport scientists poor information for a long time.

The preparation period served for "the construction of sporting form" through exhaustive preparation work, while the competition period was expected to "stabilize" and "maintain" form by using corresponding mesocycles for the realization of form without any further development. Such a primitive understanding of the periodization of training absolutely fails to correspond to reality.
In several cyclic events and, above all, in sport games (basketball, soccer, etc.), the achieved training state must not only be maintained but also further developed. Following the theory of adaptation, the main task during the
competition period is to improve long-term adaptation of the organism in order to bring it to a new stable level of specific functional capacity.
It should be noted that in contemporary sport the competition period, with an increased number of important (international) competitions, has been considerably extended. In cycling, for example, the competition period has been extended almost to nine months. This means that the preparation period is not sufficiently long for a "fundamental preparation " and the development of sporting form must take place mainly within the long competition period. A formal demarcation of preparation and competition periods is therefore unacceptable.

Arbitrary Division of Training Processes

The poorest part in the concept of periodization appears to be the construction of training. According to Matveyev, periodization is based on a simple sequence of single training units in the training processes. The basic structural unit is the microcycle. Different microcycles in turn make a larger unit in the training process in mesocycles and finally the mesocycles are combined into a macrocycle.
Matveyev (1971 and 1977) recommends in the realisation of such a linear principle the use of different direction mesocycles, such as basic familiarisation, preparation, control, competition, maintenance, restoration etc. Each mesocycle is made up of three to six microcycles. It is unknown how this is substantiated and how the speculative recommendations in periodization can be applied to practical training.

Adaptation Principles Are Ignored

Another considerable fault in the concept of periodization is the intensity and volume of the training loads. This was the reason (overlooking the naive ideas of a wave-like total volume of load) for a massive increase of load, volumes to increase the training effect during the years when the principle of periodization was followed (Tschiene 1990 and 1991).
The most important peculiarity of adaptation, conversion of qualitative characteristics from external developments into internal characteristics of the organism was not taken into consideration in the theory of
periodization (Jakovlev 1976; Verhoshansky 1988; Verhoshansky/Viru 1990; Viru 1994). The ignorance, or misunderstanding, of the specific character of adaptive changes in the organism was responsible for Matveyev's (1991) explanation in claiming the so-called "transfer" of performance capacities. This phenomenon exists, but not in highperformance sport.
For example, it is today not acceptable to state that "there are several cyclic locomotor exercises that clearly differ in their form (running, swimming, cross country skiing, cycling, etc.), but are still close as far as their endurance and other physical qualities are concerned" (Matveyev 1971).
This concept of Matveyev's is unacceptable because the specific nature of adaptational reactions of the organism depend on the type of training involved. This fact has been known for some time and is accepted as a very important criterion in the choice and organization of training loads. Load volumes have presently reached reasonable limits and the possibilities of developing new specific conditioning exercises has diminished. The socalled "transfers" and the importance of large volumes of conditioning exercises in the preparation period belong to the 1950's.

Ignorance of the numerous statements available on the physiological mechanisms of specific training influences is yet another fault in the concept of periodization. This is unfortunately responsible for an enormous time and energy expenditure in a less effective training volume.

3. IN SUMMARY

Four cardinal errors have robbed the concept of periodization of training of its theoretical and practical validity:
A poor understanding of sporting activities, technology of the preparation of elite athletes and the professional know-how of coaches.
A primitive evaluation of the methodological concept-only theoretical and without an objective foundation. In other words, purely speculative principles and a lack of objectively confirmed practical recommendations.
Ignorance of biological knowledge.
Limited acceptance of allied sciences and experimental results on training principles.
Due to a proof reading error
there was a duplication of
material on page 10 of the
previous issue. They are the
comments after the 1952
Games and the Press comments
after Bannister's race.
My apologies.

The Editor.

Abe Lemons on Coaching Track

Long-time college basketball coach Abe Lemons died recently at age 79.
Known for his witty one-liners, today's obituary in the LA Times had this:
"Track and field is the easiest sport to coach. All you have to do is tell them to keep to the left and hurry back soon."

He also said he didn't believe in team rules, because as soon as you draw up a list of team rules some kid will go out and steal an airplane and then say that it wasn't covered in the rules.

Likewise, he said that he didn't believe in having team curfews because it's always your star player who gets caught.

Kurt Bray

A Coach's Vision of Olympic Glory

by
Derek Parker

"WHERE there is no vision the people perish."

This Book of Proverbs quotation might seem irrelevant to British distance-running, but, as many observers criticise our nation's performance decline from 800 metres to the marathon, the maxim provides food for thought.
According to the dictionary, vision is "the act of seeing - a pleasing imaginative plan for, or in anticipation of, future events."

With a few honourable exceptions, there is a distinct lack of vision among many British athletes and coaches today.
Twenty years ago, when British distance-runners ruled the world, aspiring young sportsmen and women fearlessly proclaimed their ultimate ambition was to represent our country at the Olympic Games and win gold medals.

How often do we hear similar affirmations nowadays? Sadly, very seldom. We Brits are too busy eulogising African athletes and allowing ourselves to be brainwashed into believing genetic factors give runners from Ethiopia, Kenya and Morocco an inherent advantage over our own men and women.

But that's so often been the story in Britain. When we fail to achieve, we kid ourselves it's because fate dealt us an unfair hand and athletes from other countries received all the good luck from the moment they were conceived. We rationalise our failures and pretend we're not to blame.

During the early 20th century, we were told Scandinavian distance-runners were successful because they trained in the natural environment of vast conifer forests, which provided wonderful fresh-air workout opportunities unavailable in urban Britain.

After the Second World War, pundits claimed the successes of Eastern European athletes were the

fruits of a regimented life-style which encouraged full-time training to promote national prestige while British runners had to work for a living and could only run at night on muddy cinder tracks.

Later, the achievements of antipodeans like Herb Elliott and Peter Snell were attributed to a sunshine southern hemisphere climate, sand hills, mountain trails and golden beaches.

Now we're being indoctrinated into believing that being born in Africa gives athletes inherent powers of invincibility. So how does this pseudoscientific theory square with the fact that, two decades ago, British runners like Coe, Cram, McKean, Moorcroft and Ovett regularly outperformed African rivals?

Sometimes the excuses as to why British athletes couldn't compete fairly with overseas rivals verged on the farcical.

Take sprinting, for example. It was said British competitors had little chance of beating American and Afro-Caribbean opponents because our athletes' centres of gravity were unfavourably located, they had shorter Achilles tendons and their lower leg bones were not long enough in relation to their femurs to generate sufficient power in explosive events.

We would probably still believe these absurdities if Alan Wells had not won the 100 metres gold medal at the 1980 Olympic Games in Moscow by demonstrating positivity, courage, determination, an unquenchable belief in his own ability and vision.

The victory trail he blazed was the inspiration for British sprinters whose legacy we still enjoy today. Similarly, Coe, Cram, McKean, Moorcroft, Ovett and others embodied the vision that is so such a prerequisite of success.

They realised the most powerful stimulus to memorable deeds comes from deep within the human psyche. It is that internal motivation, the desire to excel, which impels ambitious men and women to strive eternally in adversity and never submit meekly to life's vicissitudes.

Successful people are the products of their own thoughts, minds and imaginations. In a vast ocean of impulses, desires and emotions, they build their own physical, psychological and spiritual harbours against the tides of negativism and pessimism - enabling them to dig deep into their inner resources and get the best out of themselves in sport and life.

To deny the importance of our own role in our destinies is to be a disciple of nihilism, defeatism and despair. It is to erroneously affirm that external, rather than internal influences within ourselves, mould our lives.

It takes away our responsibilities and obligations to ourselves and our sport - and makes us passive victims of circumstances beyond our control, always ready to blame someone or something else for our failures.

Negativism, despondency and despair is not the way of the champion - "one who competes on the campus, or field, where sporting contests take place."

The true champion is the person who competes to the best of their ability, irrespective of the final outcome. He or she constantly strives for perfection and, in the words of the philosopher, Nietzsche, rises above themselves and "casts not out the hero in their souls."

To paraphrase the American poet, Longfellow, champions are those who, "in the world's broad fields of battle, in the bivouac of life, are not like dumb, driven cattle, but are heroes in the strife."

These poetical sentiments are inspirational reminders that we alone control our own destinies and are the masters of our fates, the captains of our souls.

That was the message mirrored in the self-belief, which guided Britain's greatest athletes down through the ages to their greatest triumphs and the fulfilment of their carefully nurtured dreams and ambitions.

They had the vision to make great things happen. In doing so, they lived up the noble ideals enshrined in Longfellow's wonderful poem, "A Psalm of Life":

It is a motivational masterpiece, which should be read by Britain's athletes and coaches every day. Then perhaps we may once again thrill to the spectacle of British athletes ascending the victor's podium at major championships like the Olympic Games.

Lives of heroes remind us
We can make our lives sublime
And, departing leave behind us
Footprints on the sands of time;
Footprints, that perhaps another,
Sailing o'er life's solemn main,
A forlom and shipwrecked brother,
Seeing, shall take heart again.
Let us then, be up and doing,
With a heart for any fate:
Still achieving, still pursuing,
Learn to labour and to wait.
Derek Parker is a Master of Arts graduate of the University of Glasgow and a Bachelor of Divinity graduate of the University of London. A UK Athletics Level 4 Coach, he has advised more than 100 Scottish champions and internationalists in sprint, middle distance, hurdles and relay events.

About the Specificity of Endurance Training

by
Ants Nurmekivi, Estonia

Training in distance running events is usually based on the development of an aerobic base before more intensive training means are employed according to the predominant energy production demands of a particular distance. In the following text the author looks at specificity in the development of these performance-deciding capacities in three groups of distance running events.

INTRODUCTION

All endurance training systems are in principle based on a balance of aerobic and anaerobic training means. It is the specific length of a middle and long distance event that determines the predominance of one or another energy production process. Consequently, the dominating and therefore specific energy production mode in the 800 m race, for example, is anaerobicglycolytic, and in the marathon aerobic. Critical in distances between 3000 m and $10,000 \mathrm{~m}$ is a high level of mixed aerobic-anaerobic energy production.
However, energy production and consumption in the actual racing distance does not completely determine the employment of certain training means and their percentage distribution in a year's training. Whatever training means are used, it is generally accepted that it is first necessary to establish a firm aerobic base for more intensive training means in the mixed anaerobic-glycolytic energy production range. Aerobic training means therefore take up, the largest share of a year's total training volume of athletes competing in endurance events.
Training at the anaerobic threshold level and below it produces a complex effect in:

- Improved capillarization and with it blood supply,
- Increased number and volume of mitochondria,
- Raised activity of oxidative enzymes,
- Faster elimination of work-created lactate,
- Increase oxidation of free fatty acids to reduce glycogen consumption,
- Raised concentration of myoglobin,
- Improved contractibility of the heart muscle,

The running speed of the world's leading male long distance runners at the anaerobic threshold level (blood lactate does not exceed $4 \mathrm{mmol} / 1$) is between $2: 30$ to $3: 10$ min a kilometre. It has been reported that the usual pace in endurance training runs of world 800 m record holder Sebastian Coe was $3: 20 \mathrm{~min}$ a kilometre, showing an extremely high quality of aerobic performance among this elite. At the same time it should not be forgotten that the running speed at anaerobic threshold level must correspond to the athlete's adaptation potential. According to several studies, the level of anaerobic threshold can even drop when the running pace is too fast and the volume of running is at the same time relatively small.

MARATHON SPECIFICITY

The specific marathon running speed is at a blood lactate level of close to $3 \mathrm{mmol} / \mathrm{l}$ and therefore closely linked to anaerobic threshold pace and its normal deviations. The most adequate reflection of success in marathon training is improved specific speed, achieved above all from slow, medium and race pace training runs. Most important are 2 to 2 ? hr road runs in which the pace is gradually increased. Runs at faster than the specific speed create extreme fatigue to aerobic mechanisms. A marathoner is naturally involved in some anaerobic training, yet the aim here is not adaptation of muscles to anaerobic metabolism but the improvement of recovery mechanisms.
Next to the improvement of the vegetative sphere, it is important to pay attention to the development of local muscular endurance, keeping in mind that the muscular system is characterized by a larger adaptive inertia than the vegetative system. This can lead to a conflict between the functional potential of the vegetative and muscular systems. It is therefore useful to increase intensity only gradually in the development of the muscles directly responsible to carry the workload.
Marathon specificity is determined above all by the strength of slow-twitch muscle fibres and aerobic muscular
endurance. Konrad and Selujanov discovered a close correlation between the aerobic and anaerobic threshold levels and the strength capacities of slow-twitch muscle fibres. This indicates that strength training of marathoners should be based on typical running-type exercises dominated by actual running under heavier than normal conditions.

Under no circumstance should the development of creatine phosphate be forgotten. This is necessary to secure energy transfer from mitochondria to the muscular contraction mechanisms. As this mechanism is used both under aerobic, as well as anaerobic loads, it is not possible to effectively develop aerobic and anaerobic work capacities without it.
There is no doubt that a good running technique plays an important role. It can be identified in a fast rhythm, coordinated movements and maintenance of relaxation even at a fast pace. The aim is economy and a reduction of O_{2} consumption at standard running speeds, achieved via the exploitation of reactive external forces, better use of the elastic energy of the muscles, etc. Naturally, a marathoner needs to run a lot, but the running volume and intensity are limited by possible risk of injury to the support and movement apparatus-a factor that again stresses the need for an efficient running technique.

Most essential in an optimal technique is the placement of the foot to reduce landing shock and velocity losses. This is followed by a reduced driving action and the maintenance of a high stride frequency.
Research indicates that an increased stride frequency and reduced driving effort are closely related to maximal O_{2} consumption and therefore responsible for an improved maximal aerobic work capacity. Further, studies by Sinkonen have indicated that a fast running rhythm has a favourable influence on the maximal speed of long distance runners. This could be explained by the fact that at the end of a long training session (lasting over 1?

hours), when the glycogen reserves in the slow-twitch muscles are exhausted, fast-twitch fibres are recruited. This leads to the conclusion that a large volume of endurance training does not endanger speed qualities, provided an effective technique and a fast running rhythm are maintained.

SPECIFICITY IN LONG DISTANCES ($\mathbf{3 0 0 0}$ TO 10,000M)

The predominant aerobic-anaerobic energy consumption regimen in long distance running is characterized by the level of critical speed (the speed at which maximal O_{2} consumption occurs) and the capacity to maintain this level or a level close to it. These indicators allow us to evaluate the specific work capacity of long distance runners.

The base of endurance in long distance running is potentially high anaerobic threshold. This high threshold is closely associated with maximal O_{2} consumption, as can be seen in the fact that world-class long distance runners have an anaerobic threshold level of 85 to $90 \% \mathrm{VO}_{2}$ max. Consequently, as an athlete's performance level improves, the mixed aerobic-anaerobic training range is reduced and the choice of an optimal training pace becomes difficult.

According to MacDougall and Sale, a 100% load based on maximal O_{2} consumption provides the most effective stimulus to bring about structural and chemical changes in the muscles. Anything above this load could be highly wasteful.
It is therefore important to pay attention to the fact that the performance of long training segments (up to six minutes) basically takes place in using extensive methods and avoiding high heart rate (not over $180 / \mathrm{min}$) and lactate accumulation (not over 6 to $8 \mathrm{mmol} / 1$) values.
The world's leading long distance runners are capable of running 1000 m segments in $2: 35$ to 2:40 min under these conditions.
The high-quality work at critical speed level, where the demand on anaerobic processes is moderate, helps to avoid forcing and stabilizes work capacity. A frequent mistake in long distance running training is the exaggeration of workouts with glycolytic tendency. These workouts are naturally needed but only for the development of speed endurance and the capacity for a fast finish. Maulbecker differentiates three specific endurance development means for long distance runners, aimed at improving race factors:

Interval runs - shorter than race distance segments, but executed faster than the planned racing speed with short recoveries.
Tempo run - the volume corresponds exactly to the race distance and is performed faster than the planned racing speed with short recoveries. Tempo runs - longer than the race distance segments, but executed slightly slower than the planned racing speed.

SPECIFICITY OF MIDDLE DISTANCES
Performances in middle distance running are directly influenced by anaerobic-glycolytic energy production. The faster the 800 m or 1500 m performance in competition, the larger is the predominance of anaerobic energy processes in the race. However, an attempt to train continuously at the specific racing speed would rather rapidly lead to fatigue and overtraining. On the other hand, the anaerobic threshold speed, even if it reaches a high quality, also remains in middle distance events far removed from the specific race speed.
The solution here is the use of so-called "rhythmic runs" and extensive interval training during the basic preparation phases. This helps to reduce unnecessary stresses on the organism and allows the runner to employ a pace that is closer to racing speed.

Studies have shown that improved performances of elite middle distance runners are often directly based on an improved maximal O_{2} consumption and running economy. For example, Steve Scott of USA bettered his VO_{2} max in a single season by 8% and at the same time lifted his running economy by 5%. As a result, his mile time improved from $3: 52.70$ to $3: 49.68$. Scott's VO_{2} max was reported to be $80.1 \mathrm{ml} / \mathrm{min} / \mathrm{kg}$, indicating the value of a high aerobic work capacity also in middle distance running.
Extensive interval running, using the Gerschler method, also permits the creation of a base for the most specific training means that follow-intensive interval and repetition runs. These are preceded by longer segments, for example 600 m at a pace about 15 sec slower than the personal best, as the training state of the athlete improves.

Proceeding from specificity, attention should be paid, besides aerobic muscular endurance, also to the development of anaerobic muscular endurance. This is developed mainly by using horizontal (bounding, uphill jumping) and vertical (over obstacles, hurdles etc) jumps. The physiological planning of training should also include specific workouts to develop toleration to a high O_{2} debt.
Such training sessions must correspond to the adaptation capacity of the organism and must allow for sufficient recovery. A workout to complete exhaustion might need 96 hours, or even more, for a full recovery, while general glycolytic-tendency workouts require about 48 hours for recovery.
Despite the fact that different racing distances depend on different energy consumption regimens, there is some truth in Arthur Lydiard's claim that "the performance level in endurance events is determined by aerobic and not by anaerobic work capacity." Consequently, race performances are determined in an annual, as well as multi-year training cycles, by the level of the endurance and speed-strength base prior to the start of specific training (T. Vnorimaa, L. Seppanen, 1986).

AVOCADO - Vitamin B6 which helps the absorption of iron. Promotes normal red cell formation. Helps normal brain function. Helps in energy production and resistance to stress.
Contains manganese which aids spinal health. Contains potassium acetate which promotes regular heartbeat and normal muscle contraction. Acute loss of potassium via sweat, if not replaced, can cause a heart attack. Contains phenylalanine which improves memory and diminishes pain. Contains l-carnitine which increases the amount of fat burned for energy, it therefore aids weight loss.

BANANA - Contains vitamin B6. Contains potassium acetate. Contains tryptophan which aids sleep and is an antidepressant. If overweight, it will suppress appetite.

BROCCOLI - Contains vitamin A which prevents night blindness. It promotes bone growth, teeth development, reproduction. Contains vitamin C which aids ironabsorption. Contains selenium which is an anti-oxidant.

APPLE- A low glycaemic carbohydrate which means that the glycogen in it is stored for endurance events, there is a lot of truth in the old saying, " An apple a day keeps the doctor away." A good source of fluoride which helps treat osteoporois with calcium and vitamin D . About 10 mg of vitamin C is found in a medium sized apple.

LEAF LETTUCE - Contains vitamin A, and cobalt. Cobalt promotes normal red-blood cell formation and replaces zinc in some enzymes. In 220 grammes of lettuce there is 4.4 mg of iron.

ALMONDS - Contains vitamin E, vitamin B2 which aids the release of energy from food and maintains healthy mucous membranes lining the various tracts in the body. Contains calcium carbonate which aids bone growth and strengthens tooth enamel. Laxative in large doses. Small doses are antacid. One cup contaims 6.7 mg of iron.

MILING TWINS (as at 1.1.2002)

Twins are to be found in all areas of human activity. Track and Field has its share and it seems possible that middle/long distance running is especially blessed. Listed below are some, if not all, of successful twins over the last forty years or so. Some of the performances may not appear to rate very highly but note needs to be made of the birth date, which gives an indication when the performances were achieved.

Some of those listed would have reached greater acclaim in the longer distances e.g. the Holts, the Yeomans and the Toobys. Some have yet to make their final mark in "Senior" competition e.g. Potters and Frosts.

No doubt there are, or have been, twins in other areas of the sport but their names do not as readily spring to mind in these numbers. Also to be noted is that 30% were born in the April to September period, although only a small sample does this indicate that winter births favour success at middle distance?

If readers know of other "successful" twins in this area of the sport I would be pleased to add them to the list. Success in this instance may be interpreted loosely as the purpose of this exercise is to identify the prevalence of twins in this range of events. My e-mail address is crouch_leslie@hotmail.com.

Surname	First Name	1500	Mile	First Name (Twin)	1500	Mile	DOB
Cooke	John		$4: 07.6$	David		$4: 11.1$	16.12 .35
Milner	Tony		$4: 02.7$	Peter		$4: 03.4$	2.12 .39
Holt	David		$4: 12.0$	Robert	$3: 51.5$	$4: 10.5$	18.5 .44
Murray	Mike		$4: 06.3$	Pat		$4: 12.0$	20.5 .44
Lincoln	Rita	$4: 12.65$	$4: 37.4$	Iris		$4: 45.7$	4.11 .46
Tuck	Grenville		$4: 17.8$	Graham		$4: 21.1$	22.10 .50
Yeoman	Ann	$4: 15.3$	$4: 39.76$	Paula	$4: 11.23$	$4: 33.42$	30.3 .52
Knowles	Daniel	$3: 46.5$		Ronald	$3: 48.2$		15.10 .54
Rimmer	Gordon	$3: 45.7$		Steve	$3: 46.4$		9.8 .56
McKeenin	Christine	$4: 06.24$		Evelyn	$4: 20.8$		1.12 .56
Gayter	Paul		$4: 05.9$	Philip		$4: 09.1$	15.5 .57
Fielon	Helen	$4: 25.0$		Kerry	$4: 32.5$		7.2 .58
Samy	Shireen	$4: 18.6$		Marina	$4: 23.7$		4.9 .60
Tooby	Angela	$4: 14.3$	$4: 38.39$	Susan	$4: 16.23$	$4: 44.5$	24.10 .60
Howard	Kevin	$3: 45.3$	$4: 00.55$	Mark	$3: 42.9$	$3: 59.3$	7.2 .66
Tulloh	Katherine	$4: 25.5$		JoJo	$4: 26.2$		26.9 .70
Stacey	Gillian	$4: 15.89$		Julie	$4: 21.70$		15.11 .72
Graffin	Allen	$3: 40.14$	$3: 59.86$	Andrew	$3: 35.97$	$3: 55.42$	20.12 .77
Potter	Jane	$4: 26.63$		Juliet	$4: 25.1$		24.10 .81
Frost	Bryony	$4: 37.38$		Kathryn	$4: 41.23$		21.2 .84

BIRTH MONTHS (MALE)

Following on from the article on twins an analysis of the world top 100 at 800 and 1500 last year reveals September as the most prolific month. The September to December period is by far the "greatest" third of the year.

800m

Jan 7 Feb 9 March 6 April 5 May 10 June 8 July 4 Aug 6 Sept 15 Oct 7 Nov 12 Dec 11

1500m

Jan 6 Feb 3 March 5 April 8 May 7 June 5 July 12 Aug 9 Sept 13 Oct 10 Nov 12 Dec 10

One year is a very small sample and of course may prove nothing but there may be some indication that, at this level, the runner born September through December is perhaps more likely to be successful than one born at another time.
An analysis of the world top 100's in these events is skewed because of the substantial number of Kenyan athletes in the list, plus of course those born further south of the equator. For a broad comparison at 800 m 51 were born Jan to June and 46 July to Dec. (One or two birth dates are not known) At 1500 m the numbers are 45 and 55.
Perhaps readers might like to comment on these figures. Do they mean anything at all? Are they meaningless? Would further and more extensive research be justified?

> The Fastest
> Ever BMC 800m Races

1:45.2 Patrick Ndururi KEN 1 Battersea Park 15 June 97 1:46.29 Michael Rotich KEN 1 Watford 1 Aug 95
1:46.4 Paul McMullen USA 1 Stretford 1 Aug 95
1:46.4 Paul Walker 1 Stretford 22 July 97
1:46.6 Patrick Ndururi KEN 1 Battersea Park 14 June 98
-

$$
\begin{gathered}
\text { How To Train To } \\
\text { Become a } \\
\text { Top-Level } \\
\text { Distance Rumner }
\end{gathered}
$$

by

Lasse Mikkelsson, Finland

The aim of this discussion is to present principles of training over a sufficiently long time span that has, as a rule, led to success. This assumes that the athlete concerned has the will to train consistently in order to realise his ideals. Every training session would be a waste of time otherwise.

DEVELOPMENT OF BASIC ENDURANCE

A runner needs sufficiently developed base endurance for effective running and training. A balanced and prolonged loading of the body strengthens the cardiovascular system and helps to develop capillaries. These performance improving changes in the body are the result of multi-year training. Consequently, it is important for young athletes to run whenever possible on forest trails, meadows, roads and tracks. This requires self-discipline and continuous training before further development can take place.

The runner in the first stage of development must become accustomed to daily training before switching to twice-a-day workouts in the second phase of development. The author believes in the possibility of three workouts a day in the future, provided recovery, nutrition, massage and other training support aspects improve optimally. Finland's athletes cover 5 km , then 10 km and finally 30 km in their initial stages of development without undue fatigue.

The heart rate in base endurance runs varies according to the form and the main competition distances of an athlete. Normally the heart rate is within a 130 to I50/min range. The running speed ranges from 6 minutes a kilometre for beginners to 3.30 minutes a kilometre for high-level performers.
The development of mileage, the number of weekly training units and the number of hours spent at additional sporting activities are shown in Tables 1, 2 and 3. The training volumes outlined, presented for the 14 to 35 years age range, secure a sufficient base endurance level. The volumes for girls and women are expected to be about 10% below the presented values.

DEVELOPMENT OF SPEED ENDURANCE

Once the base endurance has been sufficiently developed, it is time to begin with the improvement of speed endurance. Speed endurance development loads lift the heart rate up to $10-20 /$ min below the maximal value and is responsible for a lactate build-up in the working muscles, although this is easily eliminated.
Heart rates in speed endurance training generally fluctuate between 150 and 170 beats a minute in adult athletes and between 160 and 180 in young athletes. In other words, the intensity of speed endurance training is within 85 to 90%, of the maximal heart rate. However, it should be kept in mind that there are large individual differences.

Distances in speed endurance training range between 3 and 5 km for youth and up to 20 km for marathon runners, These distances are executed either as fast, steady runs or tempo change runs (for example, 1 km fast- 1 km relaxed, etc.) Running speed for young athletes and beginners can be reasonably relaxed in comparison to high-level performers who train at a pace of 3:00 and $3: 10$ min a kilometre, while leading female runners use a pace between $3: 20$ and $3: 30 \mathrm{~min}$ a kilometre. Leading performers of both sexes are capable of maintaining running speeds in the higher range of maximal speed endurance over about 20km. Those with a high base endurance are even capable of covering a marathon at a pace that is on average only 10 sec a kilometre slower.

Event	14 Yrs	15 Yrs	16 Yrs	17 Yrs	18 Yrs	19 Yrs	$20-22$ Yrs	$22-35$ Yrs
800 m	1600	2000	2400	2800	3200	3600	4000	4480
1500 m	1920	2400	2880	3360	3840	4320	4960	5600
5000 m	1920	2560	3200	3840	4480	5120	5920	$6400-8000$

Table 1: Recommended number of kilometres a year for elite runners

14 Yrs	15 Yrs	16 Yrs	17 Yrs	18 Yrs	19 Yrs	$20-22 \mathrm{Yrs}$	$22-35 \mathrm{Yrs}$
$5-6$	$6-7$	$7-8$	$8-9$	$9-10$	$10-11$	$11-14$	$13-17$

Table 2: Recommended running training units (weekly).

14 Yrs	15 Yrs	16 Yrs	17 Yrs	18 Yrs	19 Yrs	$20-22 \mathrm{Yrs}$	$22-35 \mathrm{Yrs}$
8	7	6	5	4	3	2	2

Table 3: Recommended additional sporting
activities (weekly hours).

Adult distance runners should cover around 500 to 1000 km a year in speed endurance training. This represents approximately 10% of a year's total volume and depends on their performance level and their main race distance.
Speed endurance training should start in autumn, using a moderate pace that is increased during winter and spring. Running speed is increased as form improves but the heart rate remains unchanged or even drops a little. When the average running pace fails to become gradually faster from autumn to spring, the reason for this is usually found in a high intensity of recovery runs.
Two speed endurance training units a week should be performed during the development of base endurance, while a single unit a week is sufficient during the period of race preparations. Runners should maintain the level of speed endurance developed in winter during the months of May and June. Table 4 shows the development of tempo and speed endurance from November to April.

DEVELOPMENT OF MAXIMAL ENDURANCE

Athletes in the development of maximal endurance should perform runs at race speed (3000-10000m), or run over a demanding terrain at a fast pace. Cross-country runs are typical examples of hard runs, fostering the development of maximal oxygen uptake ($\mathrm{VO}_{2} \mathrm{max}$) capacity in a natural way. These loads should bring the heart rate up to 95% of the maximum, frequently reaching a maximal load intensity towards the end of the load (Fig. 1). The most common loads in the development of $\mathrm{VO}_{2} \max$ capacity are repetition runs over 1000 to 3000 m , hard fartlek and hill running. Repetition runs over 1000 m are normally performed at race pace in training for 3000 and 5000 m events, while repetition runs over 2000 m correspond to the $10,000 \mathrm{~m}$ pace. Generally, the pace of repetition runs should correspond to race speed and the ~ number of repetitions to the sum of kilometres in the race distance. Young athletes

	Nov	Dec	Jan	Feb	Mar	Apr
Men	$3: 35$	$3: 30$	$3: 25$	$3: 20$	$3: 15$	$3: 10$
Boys	$3: 55$	$3: 50$	$3: 45$	$3: 40$	$3: 35$	$3: 30$
Women	$4: 10$	$4: 05$	$4: 00$	$3: 55$	$3: 50$	$3: 45$
Girls	$4: 25$	$4: 20$	$4: 15$	$4: 10$	$4: 05$	$4: 00$

endurance runs from November to April
(minutes per kilometre).

Figure 1: Heart rates in base endurance
training (lower line-aerobic threshold;
upper line-anaerobic threshold).
and 800 m runners are urged to improve their $\mathrm{VO}_{2} \max$ through performing many repetition runs which range between 1 to 3 minutes in duration.

Fartlek should in principle be performed over a demanding terrain. An athlete in good form is expected to execute these runs at a relatively high basic speed, increasing the tempo in uphill and downhill stretches for additional loading.
Hill running distances in maximal endurance development vary between 300 and 500 m (sometimes even up to 1000 m), depending on the athlete's main race distance. The number of repetitions ranges from 5 to 10 , according to the athlete's performance level and age.
Running technique should always be carefully observed and must remain correct even in the hardest runs. The running stride must be loose and relaxed. Important aspects are a high knee lift, high hips, explosive drive and a vigorous arm action.
The author believes that a maximal development of $\mathrm{VO}_{2} \max$ with a simultaneous improvement in running speed is the key factor in distance running training. A high oxygen uptake capacity alone would be of little value when the athlete is not capable of producing high running speeds. Table 5 provides an overview of the suggested speeds for tempo runs over 1000 m in the development of maximal speed endurance.
Repetition runs in January and February are performed at $10,000 \mathrm{~m}$ race speed. This is increased to 5000 m race speed in April and May, followed by 3000 m race speed in summer. Heart rates correspond to $95-100 \%$ of the maximum. Men should, in winter, perform eight, in spring six and in summer four or five repetitions, women and youth five or six, four or five, and three or four repetitions respectively. The share of the maximal speed endurance development should be around 5% of the total training volume.

DEVELOPMENT OF ANAEROBIC ENDURANCE

Considerable lactate build-up occurs in anaerobic endurance development. Top 400 and 800 m runners usually have excellent tolerance to lactate with the highest measured blood lactate concentration 22 to $25 \mathrm{mmol} / 1$. Anaerobic endurance in distance running can be progressively developed. The main practical problem is usually the maintenance of a relaxed running technique under heavy anaerobic training loads.

For this reason it is advisable to become gradually accustomed to anaerobic endurance training through hard runs in the development of oxygen uptake capacity. The difference of these runs and the runs to improve anaerobic endurance is generally rather theoretical and depends on the endurance qualities of an athlete. The coach should therefore not be worried whether a completed workout represented oxygen uptake development or improvement of anaerobic endurance.

	Jan	Feb	Mar	Apr	May	Jun	Jul
Men	$2: 58$	$2: 55$	$2: 52$	$2: 49$	$2: 46$	$2: 43$	$2: 40$
Youth	$3: 08$	$3: 05$	$3: 02$	$2: 59$	$2: 56$	$2: 53$	$2: 50$
Women	$3: 23$	$3: 20$	$3: 17$	$3: 14$	$3: 11$	$3: 08$	$3: 05$
Girls	$3: 38$	$3: 35$	$3: 32$	$3: 29$	$3: 26$	$3: 23$	$3: 20$

Table 5: Recommended speeds for 1000 m repetition runs in the development of maximal speed endurance (minutes per kilometre).

	Jan	Feb	Mar	Apr	May	Jun	Jul
Men	30.5	30.0	29.5	29.0	28.5	28.0	27.5
Youth	31.0	30.5	30.0	29.5	29.0	28.5	28.0
Women	34.5	34.0	33.5	33.0	32.5	32.0	31.5
Girls	35.5	35.0	34.5	34.0	33.5	33.0	32.5

Table 6: Recommended speeds for 200 m repetition
runs in the development of anaerobic endurance for 3000 to 10,000 runners (seconds).

The yearly volume of anaerobic endurance training should for adult 800 and 1500 m runners comprise about 2 to 3% of the total training volume. Long distance exponents require only around 1% of the total training
volume. According to the author, marathoners have no need of anaerobic endurance training. They can develop it in races over shorter distances.

Speed-oriented athletes usually perform a limited number of very fast repetitions in anaerobic endurance training, while more enduranceoriented runners perform a larger number of not-so-fast repetitions. This applies in particular to 1500 m athletes.

The author believes that 200 m repetition runs still present a reliable method for anaerobic endurance development in the training of long distance runners. Table 6 shows a possible progression 200m repetition runs in the training of long distance runners between January and July. Table7 shows the same for a variety of distances.

	March	April	May	June	July	August
	$3 \times 5 \times 200$	$3 \times 4 \times 200$	$3 \times 3 \times 200$	$3 \times 3 \times 200$	6×200	4×200
Men	28	27	$27-26$	26	25	24
Women	32	31	$31-30$	30	29	28
	$3 \times 4 \times 300$	$3 \times 4 \times 300$	$3 \times 3 \times 300$	$3 \times 3 \times 300$	$2 \times 3 \times 300$	$2 \times 3 \times 300$
Men	45	44	43	42	41	40
Women	53	52	51	50	49	48
	10×400	8×400	6×400	6×400	$2 \times 2 \times 400$	$2-3 \times 400$
Men	63	62	59	58	55	52
Women	73	71	68	67	64	62
	5×600	5×600	4×600	4×600	3×600	2×600
Men	$1: 38$	$1: 36$	$1: 34$	$1: 30$	$1: 25$	$1: 22$
Women	$1: 53$	$1: 51$	$1: 49$	$1: 45$	$1: 40$	$1: 37$
	4×1000	4×1000	3×1000	4×800	3×800	2×800
Men	$2: 50$	$2: 45$	$2: 40$	$2: 04$	$2: 02$	$2: 00$
Women	$3: 20$	$3: 15$	$3: 10$	$2: 24$	$2: 22$	$2: 20$

DEVELOPMENT OF SPEED

Middle and long distance runners have to employ speed training but should never forget that endurance provides the foundation for speed development. Middle distance runners in speed training use submaximal interval runs with a high stride frequency and a changing rhythm in which the load intervals are treated as accelerations.

Long distance runners place emphasis on the development of speed qualities in their winter training and together with middle distance runners make use also of circuit training, strength training jumping exercises and coordination exercises as part of speed development. Running rhythm must be constantly increased and accelerations performed so that speed is gradually increased to reach the maximal over the last 10 m before switching to the relaxation phase.

The coach plays an important part in these exercises by observing the position of the head, arm action, height of the hips, position of the feet and the contribution of the ankle joint to the forward drive. Sometimes it would be helpful to use a video camera to record the athlete's sprinting for evaluation.

Although morning workouts are generally not to include speed development, two or three acceleration runs included in the morning training sessions will prepare the organism for the main session later in the day.

PLANNING OF TRAINING

In short, the author suggests the division of a year's training plan into the following periods:

- Foundation training I: October, November, December.
- Foundation training II: January, February, March.
- Competition preparation phase: April, May, June.
- Competition Period: July, August.
- Transition period: September.

It is helpful to make day-to-day, weekly and monthly training plans because a day's plan is usually guided by the rhythm of the weekly cycles. As a weekly cycle appears to be often a little short, it is common to extend it to fortnightly or 10-day cycles in order to fit in the desired number of training units.

Middle and long distance runners perform very large training volumes. For example, a 1500 m runner could cover in training:

- 14 years-1920km
- 16 years- 2880 km
- 18 years- 3840 km
- 20 to 22 years- 4960 km
- 23 to 35 years- 5600 km

The volume for an 800 m runner would be around 15% lower, while 5000 and 10,000 runners would use an approximately 15% higher volume. Women, according to their main race distance, use generally a 10% lower volume in comparison to men.

	$\mathbf{8 0 0 m}$	$\mathbf{1 5 0 0 m}$	$\mathbf{5 0 0 0 - 1 0 0 0 0 m}$
SPEED	3%	2%	1%
ANAEROBIC ENDURANCE	3%	2%	1%
MAXIMAL ENDURANCE	6%	5%	5%
SPEED ENDURANCE	6%	8%	10%
BASE ENDURANCE	82%	83%	83%

Table 8: Intensity distribution in the training of different middle and long distance events.

As far as intensity is concerned, Table 8 gives an approximate guide to how training is distributed in percentages. It should be noted that the table serves only as a rough guideline and changes will be needed according to individual requirements.

NEWS FROM HERE AND THERE . . .

We hear that B.M.C. Chairman, Dr Norman Poole, has been invited to lecture in Northern Ireland at a coaching conference. The subject is training sub 2 -minute 800 metre runners. Who better to talk on the subject - he has coached four sub 2 females.
A record number of visiting coaches will be attending the B.M.C. endurance course at Ogmore-by-Sea early this October. Could it be that the attraction is the interview with John Anderson, former national coach of Scotland? Or could it be the lectures, which cover a variety of subjects. The total number of coaches attending, inclusive of the staff coaches will be thirty-two. Forty-six female athletes have booked in together with sixty-six males. It's such a good turn out, the Centre Trust has given the whole place over to the B.M.C. for the week-end.

Talking of training weekends, one Scottish female distance runner has found herself invited to five this year! It seems everyone wants to get in on the act. There are two official courses, and three from sports shoe firms.
A strange comment from a London Marathon official to the B.M.C. Chairman at the final B.M.C, Grand Prix meeting at Watford, "I would like to have a meeting with all involved in this meeting to move it on". Well there were thirty-three races staged, it took an average of

7-minutes per race to get through, this included two 5 ks , two 3 k steeplechases. The track officials were first-class. In addition, the BMC 800 and 1500 metres junior records were broken. So, what has he in mind?
Are U.K. Athletics lottery assessors getting a little out of their league? They phoned up one B.M.C. member who missed out of funding this year by one second and set a tougher standard for next year to qualify for cash-aid. Fair enough. They then told the athlete that no cross-country racing should be done after Christmas and track preparation must start. Well, O.K. The next comment was interesting, "Paula Radcliffe had her best track season ever this year because she didn't race crosscountry," Anyone like to comment on this observation?
Charlotte Moore, who came second in the English Schools Cross-Country Championship, went on to crack 2-minutes for 800 metres in the Commonwealth Games. Apparently, her cross-country racing did no harm. Tim Hutchings in 1984, won a silver in the World Cross-Country Champs, then made the final of the 5 k in the Olympics six months later, lowering his time by 11 seconds to gain fourth place. Cross-country didn't seem to reduce his 5 k ability.
We learn that Brian Boulton, former Kent County mile champion, and a founder of the
B.M.C. is not too happy over Frank Horwill and Alf Wilkins being continuously described as B.M.C. founders. It all depends on what one means by the word "founder". Certainly the whole idea of the club's formation was Frank's. Alf definitely drew up the Objects and Rules for the club's running. Brian became the first B.M.C. National Secretary.
The Irish Milers' Club, affiliated to the B.M.C., has a strict rule - you cannot run in any of their races unless you are an I.M.C, member, or a B.M.C. member. There is some talk of the B.M.C. bringing in the same rule, or making non-members pay more for race entry to cover the cost of electric timing and the travelling expenses of all qualified track officials. Next year, I.M.C. members will be issued with membership cards (you will only get one if your subs are up to date) which must be shown when collecting numbers. Failure to produce the card at a Grand Prix meeting may cost $£ 7.50$ p to race.
B.M.C. members only pay $£ 2$ for a programme on entry and nothing else. Subs are due on the 1st January each year, and if not paid by March ending, you will be deemed a non-member. Subs can be sent to or banker's orders available from Pat Fitzgerald, 47 Station Road, Cowley UB8 3A8. The Ogmore-by-Sea course saw B.M.C. members only paying COST price, non B.M.C. members paid $£ 20$ extra to
help cover the costs of the visiting lecturers and or staff coaches. All B.M.C. courses are non profit-making.
The B.M.C. President, Lt. Col. Glen Grant, twenty-two times national army champion at either $800 \mathrm{~m}, 1500 \mathrm{~m}$ or the mile, and also Combined Services champion a dozen times is thinking of a plan to eradicate the need for the twenty-two strong national B.M.C. committee meeting altogether several times a year. He proposes a number of "supremos", each with a sub-committee. Five chiefs will be selected and given a budget to work within. Assuming that they are called Directors, we may have a new look national committee, e.g., Director of Coach Education, Director of Race Planning, Director of Finance, Director of Publicity and Director of Development. Each director will
have a sub-committee of not less than three and not more than six. The sub-committees will meet quarterly. Directors only will attend national committee meetings. An interesting concept.

Brendan Hackett, founder of the Irish Milers Club, also a B.M.C. member, is a well known writer on sports psychology and coach to several Irish internationals. He is convinced that the female $4 \times 1500 \mathrm{~m}$ world record can be broken by an Irish team. Frank Horwill is also convinced that the record, currently held by the Australians, can be in the hands of an all B.M.C. British squad. Such a contest would be great to stage in the 40th anniversary year of the B.M.C. Note - the B.M.C. was founded in 1963.

Dave Cocksedge, former athletics correspondent, now residing in the Far East, suggests in a letter to a B.M.C. founder, that opposition to the B.M.C. has a "kiss of death" about it. Three members of the old British Amateur Athletics Board, who thought the B.M.C. a nuisance, are no longer with us. A coach and author who openly criticised the B.M.C., died at a comparatively young age. Also, a coach who found the B.M.C. an irritation to his official position and tried to finish it off, is no longer with us. One or two critics of old, who are still alive, may be a little concerned at Dave's prognosis!

???? MIDDLE DISTANCE QUIZ ????

HISTORY

1) Name the two occasions when the Olympic 1500 metres title was won in world record time?
2) Who holds the U.K. male record For 2 miles?
3) What U.K. records does Kelly Holmes hold?
4) Who holds the U.K male mile record?
5) Who got silver medals in the male World Cross-Country Championships in 1984 and 1989?

PHYSIOLOGY

What middle-distance event accumulates more lactic acid than any other?
What allocation percentage-wise, did A.V. Hill allot anaerobically to the 1500 metres event? What is the true measure of iron stores in the body?
9) Training in the morning helps what?
10) When is glycogen preferentially stored?
11) Name the simple test that can predict your $\mathrm{VO}_{2} \max$?

NUTRITION

12) List six iron-containing foods?
13) What is the best way to boil vegetables and preserve their vitamin and mineral content?
14) List six low-glycaemic carbohydrates which are stored preferentially as glycogen?
15) What should be the main meal of the day?
16) What vitamin and mineral is primarily concerned with anti-infection?

SPORTS MEDICINE

17) What daily procedure will help you to detect increasing stress and or infection?
18) How long should ice be applied to an injury?
19) Bruised tissue heals faster in the presence of a high intake of a particular vitamin. Name it?
20) If shin-soreness continues for more than 14 days with treatment what is the next step?

TRAINING

21) If you wish to train at 80 per cent of your $\mathrm{VO}_{2} \mathrm{max}$, what pulse rate will be required?
22) What simple measure can be applied to ensure that your steady runs are bringing about a training effect?
23) How long does it take for one training session, hopefully, to bring about a change in the body for the better?
24) Starting from scratch, training for 5 days a week for 35 mins duration how 1 ong will it take to bring about MAJOR changes in the body for the better?
25) What pace would you require to run at to achieve 100 per cent of the $\mathrm{VO}_{2} \max$?

Compiled by Frank J. Horwill

Doug Wilson-His Training

Doug Wilson, born 1920, was a leading miler who, as with others, lost his best years because of war. Despite that he trained and raced and shown below is his world ranking at one mile (It is accepted that apart from neutral countries and the USA competition was limited in the war years).

```
1942 4:14.0 8th
1943 4:13.4 6th
1944 4:11.4 8th
I945 4:16.0 15th
1946
1947 4:14.8 13th
1948 4:13.4 22nd
1949 4:15.0 43rd
```


Training Schedule

Winter Training

| Mondays | $-\quad 3$ mile road run |
| :--- | :--- | :--- |
| Wednesdays | Ditto |
| Saturdays | $-\quad 5$ or $71 / 2$ mile cross- |

country race

Summer

March - September.
Varied according to races on Saturdays and mid-week events. Typical evening's training could alternate as follows; 3 times a week.
A Warm-up jogging 2 miles.

$$
2 \text { or } 360 \text { yd bursts. }
$$

$3 / 4$ mile time test.
B Warm-up 2 miles.
A few speed bursts.
2×300 yds flat out.
C Warm-up jogging 2 miles. A few speed bursts 660 yd time test. D Occasional 3-4 miles fartlek.
Doug Wilson was a most stylish runner and will be remembered as running second to Gundar Haegg at the White City in the two miles race which was held in the same meeting as the Andersen/Wooderson clash. To be noted is the traditional(?) meagre quantity of training although to achieve the times he did suggests that the quality was there.

COMMONWEALTH GAMES

The British Milers Club can reflect with pride the results of their members' runs in the games. Some of the highlights were:

Women's 800m	4th Susan Scott 6th Charlotte Moore 7th Jo Fenn
Women's 1500m	1st Kelly Holmes 2nd Hayley Tullet 3rd Helen Pattinson
Women's 5000m	1st Paula Radcliffe 5th Jo Pavey
Men's 1500m	1st Michael East 4th Tony Whiteman
Men's 1500m	4th John Mayock 5th Sam Haughian
Men's 3k St.	4th Stuart Stokes.

The women's 800 involved three rounds in three days and was not easy. Susan Scott ran 2:02.82, 2:01.0 before a great PB of 1:59.30(Scottish Record)in the final. When one considers that her best before this year was a shade inside 2:04 it indicates the tremendous stride forward she, and her coach, have achieved.

The young Charlotte Moore ran 2:03.38, 2:00.95(new junior record) and a totally unexpected 1:59.75 for yet another PB and record. Note she was voted Athlete of the Course at Ardingley two years ago. Her best last year was 2:05.86 and this giant leap forward brings deserved acclamation to her and her coach.

Jo Fenn ran 2:04.17, 2:03.04 and a PB of 1:59.86. Three great performances.
The final was led out by the Jamaican Michelle Ballantine to a 56.72 bell and whilst we would not expect Mutola to be fazed by this pace it was heart-warming to see the three Brits hanging in there and challenging for podium places. Does this show the benefit of paced BMC races?

The 1500 required two rounds. The three eventual BMC medallists were not unduly pressed to reach the final in which the Aussie runner Jamieson took the first lap in 68.51. Then the Kenyan Mugo brought the race to a two-lap time of $2: 16.96$. At the bell Kelly Holmes and Helen Pattinson led with three laps being reached in 3:20.52(a 400 of 63.56). From there Holmes pressed on to win with Hayley Tullett passing Pattinson for the silver medal close to the finish line. Times were $4: 05.99,4: 07.52$ and 4:07.62. The last lap being run in close to 60 seconds.

The 5k was a Paula Radcliffe Production, directed by and starring her. It was a demonstration, on current form nobody in the world could have lived with her. As has been noted elsewhere if she had not waited for 600 metres to see if there were any front runners she would surely taken the World Record but how can anyone be critical?

One thousand metre times of 2:59.91, 2:53.65, 2:54.48 (8:48.04), 2:52.30 and 2:51.08 brought her home in a British and Commonwealth record time of 14:31.42. What else can be said? Jo Pavey, reported to be not in the best of health, tried valiantly to hang on to the early pace -indeed ran 8:52.6 for the first 3 k -but paid for it later. Nevertheless her fifth place of $15: 19.91$ was a brave effort.

The 10k did not offer up medals but Liz Yelling notched up a big PB in fourth, $31: 58.39$ with Hayley Yelling sixth, 32:29.73. Jo Wilkinson was seventh over a minute further back.
Men's I500. Two rounds with all three Englishmen, BMC members, getting through. Despite, surprisingly, with only two Kenyans entered medals were going to be hard to get. The lesser-rated Kenyan led the opening lap to a time of 61.8 followed by a 56.36 (1:57.44). Chirchir was the bell leader $(2: 41.47)$ and was still in front at 1200 (2:56.08). Tony Whiteman then went for it and looked a likely winner but he faltered in the home straight some 30 metres out. It then looked as thought the race was between Chipchir and the Aussie Abdi but Michael East swooped from way back for an unexpected gold medal in 3:37.35 with Tony Whiteman fourth in 3:38.04 and Tom Mayo eighth in 3:41.70. Although the BMC came out with only one medal overall they won the team race.

The 5k was a Kenyan procession but John Mayock and Sam Haughian ran well above themselves for superb PB's in fourth and fifth, 13:19.43 and 13:19.45.
The Steeplechase was again a Kenyan procession but BMC member Stuart Stokes ran an isolated but meritorious PB of $8: 26.45$ for fourth.
The overall results show just how strong the BMC is in athletics in this country and there were others in the Games e.g. Matt Shone, who were not so prominent in the results which further underlines its importance to middle, and long, distance running.

Question 1) Answer - 1936 and 1960 (Jack Lovelock and Herb Elliott).
Question 2) Answer - Steve Ovett(8:13.51).
Question 3) Answer - 800, 1k, 1500m.
Question 4) Answer - Steve Cram(3:46.32).
Question 5) Answer - Tim Hutchings.
Question 6) Answer - The 800 metres.
Question 7) Answer - 50 per cent.
Question 8) Answer - serum ferritin.
Question 9) Answer - Reduce weight, increasing the metabolic rate for several hours, i.e.. burning more calories at rest.
Question 10) Answer - The first 2 hours after training.
Question 11) Answer - The Balke Test (15minutes of running around the track and the distance covered.)
Question 12) Answer - Organ meats(liver kidney heart), egg yo1k, legumes, cocoa, cane mollasses, shellfish and parsley. Meat, fish, poultry, nuts green vegetables, wholemeal bread.
Question 13) Answer - Boil the water first, then place the vegetables in the saucepan.
Question 14) Answer - Fructose, soyabeans, kidney beans, lentils, sweet potatoes, apples, oranges, oats, brown rice, whole wheat bread.
Question 15) Answer - breakfast.
Question 16) Answer - Vitamin C(1,000mg daily), zinc(30mg,daily).
Question 17) Answer - Take the pulse first thing IN BED, take it again after rising, 60 secs later. Note the difference. A plateau difference will occur after a week. When this is UP, DON'T TRAIN.
Question 18) Answer - Not more than 5 minutes.
Question 19) Answer - Vitamin C (2,000mg daily).
Question 20) Answer - A bone scan.
Question 21) Answer - 88 per cent of your maximal heart-rate.
Question 22) Answer - Take the average time done per 400 metres in your best 1500 metres, and add 20 secs then convert to time per mile, e.g. Best 1500 m time $=5 \mathrm{mins} \times 80 \mathrm{secs}$ per $400 \mathrm{~m}+20$ secs $=100$ secs x $4=6$ mins .40 secs $/$ mile on a steady run.
Question 23) Answer - 10-12 days.
Question 24) Answer - 12 weeks.
Question 25) Answer - 3k pace (About 4 seconds per 400 m slower than in your best 1500 metres time.)

THE EUROPEAN CHAMPIONSHIPS

Once again the BMC supplied the core of the "middle distance" team. Success proved much harder to come by than in Manchester. The exertions of the Commonwealth Games probably played some part in the level of under performing.

Women's 800: First round qualifying was first three plus four fastest losers, from four heats. The opening lap times in each went as follows, 60.87, $60.19,59.42$ and 58.12 . The runners seemingly recognised that to ease qualifying they needed to operate somewhat faster than the earlier heats. How often is this recognised, and more importantly, acted upon in domestic competition?

Kelly Holmes won the first heat in 2:03.18 whilst Jo Fenn was second in heat four in 2:01.91, Jo had not needed that effort in Manchester. Semifinals next day, first three and two fastest losers from the two races, again an advantage to those fortunate to run in the second race. After a 57.9 bell Jo could only manage sixth, 2:02.91 whilst Kelly led her semi home in 2:00.6 after a $58: 91$ bell. Although the bell time in the second race was slower than the first the runners clearly pressed on with greater effect as both fastest losers came from that semi.
The final was a Ceplak demonstration, a fast first 200, 27.82 took her to the bell in 57.61 , the 600 in 87.72 some several metres ahead of Kelly who began to tie up in the home straight and this allowed Martinez to pass her for silver. Kelly notched 1:59.86 to reach only third on this years UK list. For Martinez it was a personal best.
1500: For Kelly Holmes a fourth race in four days. It proved a race to far. With qualifying set at first three from three heats with three fastest losers once again those going later would have the knowledge of knowing what was required. The lap times in the opening heat were 65.84, 2:13.24 and 3:20.64 and Kelly was only fourth in 4:08.11. The leader in the second lap went out to clock 62.44, 2:09.79 and 3:15.53, it was the "unknown" Ayhan and she finished well ahead of the field but Helen Pattinson only managed 4:09.66 for fifth. The third race went out to $61.28,2: 09.29$ and 3:17.87. This race produced all three fastest losers, the slowest being 4:05.78 with Hayley Tullett a distant seventh in 4:10.68.
The final, sadly, was a complete reversal of Manchester, without any Brits. However it threw up a superlative run by the Turkish girl, Ayhan. Blasting through $60.14,2: 06.41$ and 3:12.84 left all in her wake but not all adrift. Szabo closed from 150 out to get abreast around 30 metres out and both struggled for mastery with the Turk obtaining a narrow win. Her run was reminiscent of Bayi's 1500 in the Commonwealth Games thirty years ago, in which he set a world record with an even greater display of solo running.
500Om: This was a straight final. The kilometres went $3: 10.52,2: 58.15,3: 06.15,3: 13$: and $2: 46.82$, for a final time of $15: 14.6$. A race of "fasts and slows". Jo Pavey was "dropped" after surges but fought back with steady pace to finish fifth, her second such place in successive finals. This time in 15:18.70, just fractionally faster than in Manchester. Hayley Yelling was a distant 18th, clearly a long way from her best.
10,000 metres: What can be added to the superlatives lavished on the incomparable Paula? The rain that poured down drove the spectators on the back straight home and therefore their support was lessened. Lapping almost all, and some twice, added extra distance. A new "Championship best performance" at 5 k if not a record.

1000m times

$2: 59.16$	
$2: 58.05$	$(5.57 .21)$
$2: 59.84$	$(8: 56.84!)$
$3: 00.84$	$(11: 56.81)$
$3: 00.35$	$(14: 57.65!)$
$3: 00.53$	$(20: 58.52)$
$3: 02.66$	$(24: 01.18)$
$3: 02.38$	$(27030$
$2: 57.53$	$(30: 01.09)$

Supporter of many BMC races; Sonia O' Sullivan held on for as long as possible but had the satisfaction of a new Irish record, 30:47.59, whilst Ribeiro, who also hung on to the pace in the early stages dropped back and out. Given the conditions a general view was that $29: 50$ would be within Paula's range and on a good day i.e. dry, windless, an "all-round" crowd and lesser competitors, then 29:40 was possible. Her 10k time offers 1268 points on the IAAF scoring tables. This equates with a 1:53.70 800 and a 3:53.03 1500. Such is the measure of her ability. Liz Yelling was unable to repeat her form of the Commonwealth Games and finished $20^{\text {th }}$, if she had repeated her Manchester time she would have been $9^{\text {th }}$.
Men's 800. Tony Whiteman in heat four blazed out a 51.38 first lap but could not maintain it. He finished last in 1:50.60. James Mcllroy, the only other selected Briton, faced a first three plus four fastest losers situation. He was in heat three, the first two were won in the same time, 1:47.52. He was fourth in 1:47.67, winner 1:47.07. The last heat was won in 1:46.90, after the fastest first lap of the four, 51.38 . Whilst the latter heats were faster by only a small margin they were faster. McIlroy ran in the first semi, and a relatively slow first lap, 55.83 saw all the runners manage negative splits with the winner notching 1:48.01 and the Brit 1:49.15 for fifth and out. With the qualifying for the final being first three and two fastest losers it was not surprising to see the second semi go out in 52.80 and both fastest losers coming from it. In fact the last man was faster than the winner of the first semi.

Men's 1500. All three of the Brits get through their opening heats to the final. The qualifying was first four in each of two heats plus four fastest losers. Tony Whiteman ran fourth in his heat, which was won in 3:46.71. The other semi runners, clearly aware of what was needed, were six seconds faster at 800 and consequently supplied all fastest losers. Michael East was 5 th and John Mayock 6th. All ten finishers were faster than the winner of the other race.

The final, with a days rest, saw an opening lap of 63.52 and the 800 reached in $2: 10.39$. Then came the pressure as the 1200 was reached in 3:06.62, a 56.23 lap. The last lap was given as 51.66 . This was not to be another Manchester.
Tony Whiteman and John Mayock could not match this pace and whilst Michael East was reputed to have covered his last 400 in 51.05 he, on this occasion, could not give men like Rui Silva, $3: 30.07$ this year, so much lead at the bell. His sixth place of $3: 46.30$ was noble but unavailing. The winner, and second placer, ran inside thirty-nine seconds for the last 300 and to pass them would have needed something undreamt of in terms of speed, perhaps fifty-second last 400 speed!! Readers may recall I made mention of the ages of our reps in Edmonton last year. John and Tony were again the oldest in the field, the average age of the others was 24.
Men's 5k: A mixture of "slows and spurts". Sam Haughian could not repeat his heroics of Manchester and despite starting as the seventh fastest European this year, actually fifth fastest of those who started, he came home in ninth place in 13:50.75. Note that humidity was 82%.
Men's 10k: Another race of "slows and spurts". Karl Keska responded to these with even pace except when the big push came three laps out. The last k took only $2: 35.65$ and the second half of the race 13:48.22. Karl clocked 28:01.72 for a creditable fifth place.

British Milers' Club Records (as at 31st August 2002)

BMC Members' Record by a paid-up BMC member in a BMC race

Men
M600
M800
M1000
M1500
M Mile
M2000
M3000
M 2 Mile
M4000
M5000
M10000
M1500SC
M2000SC
M3000SC
1:17.4 Andrew Hart 1999 1:46.7 James McIlroy IRE 1998 2:19.4 Andrew Hart 1997 3:37.33 Andrew Graffin 2002 3:56.35 Anthony Whiteman 1996 5:01.28 Andrew Graffin 2000
7:51.4 Rob Whalley 1997 8:34.5 Ian Gillespie 1997 11:03.2 Rob Whalley 1998 13:28.22 Kris Bowditch 2000 28:00.50 Andres Jones 2000 no mark known
5:35.73 Pat Davoren 2002
8:25.37 Christian Stephenson 2000
"BMC Record"
by anyone
in a BMC race

1:17.4 Andrew Hart 1999
1:45.2 Patrick Ndururi KEN 1997
2:19.4 Andrew Hart 1997
3:37.33 Andrew Graffin 2002
3:55.24 David Kisang KEN 2000
5:00.66 David Kisang KEN 2000
7:51.32 Craig Mottram AUS 2000
8:34.5 Ian Gillespie 1997
11:03.2 Rob Whalley 1998
13:23.94 Craig Mottram AUS 2001
27:56.94 Kameil Maase HOL 2000
4:16.57 Lee Hurst 2000
5:35.73 Pat Davoren 2002
8:25.37 Christian Stephenson 2000

BMC Club Record
by a paid-up BMC member in any race world-wide

1:15.0+ Seb Coe 1981
1:41.73 Seb Coe 1981
2:12.18 Seb Coe 1981
3:29.77 Seb Coe 1986
3:47.33 Seb Coe 1981
4:53.06 Jack Buckner 1987
7:32.79 David Moorcroft 1982
8:13.51 Steven Ovett 1978
10:28.7+ David Moorcroft 1982
13:00.41 David Moorcroft 1982
27:30.3 Brendan Foster 1978
no mark known
5:23.56 Tom Buckner 1992
8:18.91 Roger Hackney 1988

Women
W600
W800
W1000
W1500
W Mile
W2000
W3000
W 2 Mile
W5000
W10000
W2000SC
W3000SC

1:29.4 Linda Staines 1997
2:01.93 Diane Modahl 1998
2:44.9 Jo White 1980
4:05.94mx Sonia O'Sullivan IRE 2002
4:30.77 Joanne Pavey 1997
6:12.4mx Dianne Henaghan 1998
8:53.7mx Joanne Pavey 2000 no mark known
15:32.23 Sonia O'Sullivan IRE 2000
31:41.1 Elana Meyer RSA 2000
7:05.03 Claire Entwistle 2002
11:26.15 Paula Gowing 2001

1:29.4 Linda Staines 1997
2:00.7 Shireen Bailey 1985
2:44.31 Sharron Davenport 1988
4:05.94mx Sonia O'Sullivan IRE 2002
4:30.77 Joanne Pavey 1997
6:12.4mx Dianne Henaghan 1998
8:53.58mx Natalie Harvey AUS 2000
no mark known
15:30.79 Natalie Harvey AUS 2000
31:41.1 Elana Meyer RSA 2000
6:36.02 Jayne Spark 2000
9:55.01 Tara Kryzwicki 2001

1:26.5 Kirsty Wade 1985
1:56.80 Kelly Holmes 2000
2:32.55 Kelly Holmes 1997
3:58.07 Kelly Holmes 1997
4:19.41 Kirsty Wade 1985
5:37.00 Christine Benning 1984
8:22.20 Paula Radcliffe 2002
9:32.07 Paula Radcliffe 1999
14:31.42 Paula Radcliffe 2002
30:01.09 Paula Radcliffe 2002
6:54.92 Claire Entwistle 2002 10:56.22 Tina Brown 2002

British Milers' Club Junior Records (as at 31st August 2002)

BMC Junior Members' Record by a paid-up BMC junior member in a BMC race
Junior Men
M600
M800
M1000
M1500
M Mile
M2000
M3000
M5000
M10000
M1500SC
M2000SC
M3000SC 8:55.08+ Andrew Franklin 1999 (+ one barrier short)
"BMC Junior Record"
by any junior
member in a BMC race

1:18.49 Richard Davenport 2002
1:47.18 Ricky Soos 2002
2:23.4 Justin Swift-Smith 1993
3:41.15 Stefan Beumer HOL 2000
3:59.4 Steven Ovett 1974
5:20.0 Glen Grant 1972
7:53.40 Mizan Mehari ETH 1998
13:28.6 Mizan Mehari ETH 1998 no mark known
4:19.98 Daniel Yates 2000
5:46.85 Ricky Soos 2001
8:55.08+ Andrew Franklin 1999

1:32.2 Jane Finch 1974

2:03.86 Lisa Dobriskey 2002
2:44.31 Sharon Davenport 1988
4:11.67 Georgie Clarke AUS 2000
4:39.0 Jacqueline Beasley 1985
6:22.2 Paula Yeoman 1971
9:24.40 Danielle Barnes 2002
16:16.55 Charlotte Dale 2002
no mark known
7:34.89 Ruth Waller 2002
12:15.79 Susan McGrenaghan 2001

BMC Junior Club Record by a paid-up BMC junior in any race world-wide

1:19.5 Steven Ovett 1972
1:45.77 Steven Ovett 1974
2:20.0 Steven Ovett 1973
3:40.90 David Robertson 1992
3:59.4 Steven Ovett 1974
5:20.0 Glen Grant 1972
8:04.93 Chris Thompson 2000
14:06.52 Chris Thompson 2000
30:06.01 Andres Jones 1996
no mark known
5:43.23 Ricky Soos 2001
8:55.08+ Andrew Franklin 1999

1:30.2 Michelle Wilkinson 1989
1:59.75 Charlotte Moore 2002
2:38.58 Jo White 1977
4:13.40 Wendy Sly 1976
4:34.29 Jo White 1979
6:22.2 Paula Yeoman 1971
9:09.14 Lisa York 1989 16:16.39 Collette Fagan 2001 no mark known
6:55.83 Bryony Frost 2002 no mark known

These statistics show the best times achieved for each place in BMC races since 1963. They have been compiled from Athletics Weekly 1963-1991, the BMC News from 1992 - 2000 and the BMC website from 2001 onwards. Many thanks to Brian Boulton, David Cocksedge, Tim Grose and Martin Rix for their help.

Men's 600m					
1:17.4	Andrew Hart	1	Watford	26 May	99
$1: 18.7$	* Pete Lewis	2	Crystal Palace	12 May	76
$1: 19.8$	Jason Thompson	3	Sutcliffe Park	20	Apr
96					

Men's 1,500m						
3:37.33	Andrew Graffin	1	Bangor	21	Jul	02
3:39.47	Michael East	2	Watford	9	Jun	01
3:39.7	Michael Openshaw	3	Battersea Park	14	Jun	98
3:39.88	Angus MacLean	4	Watford	9	Jun	01
3:40.9	Neil Caddy	5	Battersea Park	14	Jun	98
3:41.5	Grant Graham	6	Battersea Park	14	Jun	98
3:41.5	* John Koskei KEN	7	Battersea Park	14	Jun	98
3:42.28	Thomas Mayo	8	Solihull	14	Jul	99
3:43.29	Adam Zawadski	9	Watford	9	Jun	01
3:43.52J	Colm McLean	10	Solihull	14	Jul	99
3:43.84	Mike Power AUS	11	Watford	9	Jun	01
3:44.42	Philip Tedd	12	Watford	9	Jun	01
fastest ' \mathbf{B} ' race						
3:41.5	Robert Hough	1r2	Wythenshawe	30	Jul	96
	fast					
3:46.71	Simon Burton	1 r 3	Watford	23	Jun	99
Men's Mile						
3:55.24	* David Kisang KEN	1	Battersea Park	4	Jun	00
3:55.31	* Abraham Chebii KEN	2	Battersea Park	4	Jun	00
3:59.2	John Boulter	3	Motspur Park	23	Jul	69
3:59.2	James McGuinness	3	Stretford	30	Aug	75
3:59.4	Anthony Settle	4	Stretford	30	Aug	75
3:59.7	* David McMeekin	5	Stretford	30	Aug	75
3:59.7	* Ron McDonald	6	Stretford	30	Aug	75
fastest ' B ' race						
4:04.50	Adam Zawadski	1r2	Barnet Copthall	31	Aug	96
Men's 2,000m						
5:00.66	* David Kisang KEN	1	Battersea Park	25	Jun	00
5:01.28	Andrew Graffin	2	Battersea Park	25	Jun	00
5:02.90	Allen Graffin	3	Battersea Park	25	Jun	00
5:09.53	* David Chepkisa KEN	4	Battersea Park	25	Jun	00

Men's 3,000m

7:51.32	* Craig Mottram AUS	1	Wythenshawe	14	Jun	00
7:52.14	* Julius Kimutai KEN	2	Wythenshawe	14	Jun	00
7:52.27	Kris Bowditch	3	Wythenshawe	14	Jun	00
7:53.11	Julian Moorhouse	4	Wythenshawe	14	Jun	00
7:53.54	John Nuttall	5	Cardiff	5	Jul	00
7:54.12	Andres Jones	6	Cardiff	5	Jul	00
7:56.52	* John Henwood NZ	7	Cardiff	5	Jul	00
7:56.63	* George Okworo KEN	8	Cardiff	5	Jul	00
7:57.15	* Seamus Power IRE	9	Cardiff	5	Jul	00
7:58.03	Dermot Donnelly IRE	10	Wythenshawe	14	Jun	00
7:58.74	* James Nolan IRE	11	Wythenshawe	14	Jun	00
7:59.20	John Nuttall	12	Wythenshawe	14	Jun	00
7:59.35	Nick Wetheridge	13	Wythenshawe	14	Jun	00
fastest 'B' race						

Men's 5,000m

13:23.94	* Craig Mottram AUS	1	Solihull	23	Jun
13:27.09	* Mohammed Yagoub	2	Solihull	23	Jun
13:29.19	* George Okworo KEN	3	Battersea Park	25	Jun
13:30.22	* Boaz Kisang KEN	4	Battersea Park	25	Jun
13:31.32	* Seamus Power IRE	5	Battersea Park	25	Jun 00
13:37.97	Michael Openshaw	6	Battersea Park	25	Jun 00
13:42.15	* John Henwood NZ	7	Battersea Park	25	Jun
13:42.35	Julian Moorhouse	8	Battersea Park	25	Jun
13:47.18	* Peter Matthews IRE	9	Battersea Park	25	Jun 00
13:53.77	Nick Wetheridge	10	Solihull	23	Jun
13:54.58	Fiachra Lombard IRE	11	Solihull	23	Jun
13:56.31	* Mohammed Farah	12	Solihull	23	Jun
13:56.44	Guy Amos	13	Solihull	23	Jun
13:58.44	Nathaniel Lane	14	Stretford	11	Jul
13:58.88	Don Naylor	15	Stretford	11	Jul
fastest 'B' race					
14:05.2	Boaz Kisang	1 r 2	Solihull	23	Jun

Men's $\mathbf{1 0 , 0 0 0 m}$

$27: 56.94$	* Kameil Maase HOL	1	Watford		22	Jul
00						
$28: 00.50$	Andres Jones	2	Watford	22	Jul	00
$28: 03.31$	* Robert Denmark	3	Watford	22	Jul	00
$28: 04.48$	* Mark Steinle	4	Watford	22	Jul	00
$28: 08.46$	* Michael Aish NZ	5	Watford	22	Jul	00
28:13.44	* Hendrick Ramaala RSA	6	Watford	22	Jul	00
$28: 18.58$	* Michael Buchleitner AUT	7	Watford	22	Jul	00
$28: 23.11$	*Seamus Power IRE	8	Watford	22	Jul	00
$28: 27.32$	*Peter Matthews IRE	9	Watford	22	Jul	00
28:42.40	*Claes Nyberg SWE	10	Watford	22	Jul	00
	(10)					
$28: 43.08$	* Mark Hudspith	11	Watford	22	Jul	00
$28: 50.98$	* Ian Hudspith	12	Watford	22	Jul	00

Men's 3,000m SteepleChase

8:25.37	Christian Stephenson	1	Solihull	19	Aug	00
8:26.07	Justin Chaston	2	Solihull	19	Aug	00
8:33.61	Stuart Stokes	3	Wythenshawe	14	Jun	00
8:37.63	Charlie Low	4	Solihull	19	Aug	00
8:44.03	Donald Naylor	5	Wythenshawe	14	Jun	00
Women's 600m						
1:29.4	Linda Staines	1	Battersea Park	19	Apr	97
1:31.2	Rachel Jordan	2	Battersea Park	19	Apr	97
1:31.6	Cathy Dawson	3	Highgate	7	Aug	96
Women's 800m						
2:00.7	* Shireen Bailey	1	Ipswich	19	Jun	85
2:01.98	* Oksana Zbrozhek RUS	2	Bangor	21	Jul	02
2:02.0	* Jane Finch	3	Stretford	24	Jul	83
2:03.0	* Christina Boxer	4	Stretford	24	Jul	83
2:04.0	Teena Colebrook	5	Stretford	24	Jul	83
2:04.6	* M Corcoran AUS	6	Stretford	24	Jul	83
2:05.0	Suzanne Morley	7	Stretford	24	Jul	83
fastest ' B ' race						
2:07.1J	Olivia Hines	1 r 2	Solihull	23	Jun	01
fastest ' C ' race						
2:11.79J	Lucy Jones	1r3	Solihull	23	Jun	01

Women's 1,500m							9:16.42	Jilly Ingman	5	Wythenshawe	14	Jun	00
4:08.08	Sonia O'Sullivan IRE	1	Watford	22	Jul	00	9:18.59	* Karen Hind	6	Wythenshawe	14	Jun	00
4:10.65	Maria Lynch IRE	2	Eton	3	Jul	02	9:22.68	Dianne Henaghan	7	Wythenshawe	14	Jun	00
4:11.24	Rachel Newcombe	3	Eton	3	Jul	02	9:28.68	Sharon Morris	8	Wythenshawe	14	Jun	00
4:11.80	Kerry Gillibrand	4	Eton	3	Jul	02							
4:15.05	Maria Lynch IRE	5	Solihull	23	Jun	01	Women's 5,000m						
4:16.61	* Naimh Beirne IRE	6	Solihull	23	Jun	01							
4:18.04	Dianne Henaghan	7	Watford	22	Jul	00	15:30.79	* Natalie Harvey AUS	1	Stretford	11	Jul	00
4:18.42	Susan Scott	8	Watford	22	Jul	00	15:32.62	* Andrea Whitcombe	2	Battersea Park	25	Jun	00
4:18.79	Maria Lynch IRE	9	Watford	22	Jul	00	15:39.40	* Maria McCambridge IRE	3	Stretford	11	Jul	00
4:19.61	* Andrea Whitcombe	10	Watford	22	Jul	00	15:40.85	* Sarah Wilkinson	4	Stretford	11	Jul	00
4:20.25	Elaine Fitzgerald	11	Watford	22	Jul	00	15:56.64	Amanda Parkinson	5	Stretford	11	Jul	00
4:23.65	Angela Newport	12	Watford	9	Jun	01	16:00.84	* Tara Krzywicki	6	Wythenshawe	3	Jun	98
							16:03.30	* Lucy Wright	7	Wythenshawe	3	Jun	98
							16:05.81	* Karen Hind	8	Battersea Park	25	Jun	00
$4: 21.27$	Sharon Morris fastest	$\begin{aligned} & 1 \mathrm{r} 2 \\ & \mathrm{rac} \end{aligned}$	Watrord	9	Jun	01	16:10.08	Debbie Gunning	9	Wythenshawe	3	Jun	98
4:24.99	Anne-Marie Hutchinson	1r3	Watford	9	Jun	01	16:19.72	Amy Waterlow	10	Wythenshawe	3	Jun	98
4.24.9	Anne-Marie Hutchinson	1 3	Watrord	9	Jun	01	16:29.57	Penny Thackray	11	Wythenshawe	3	Jun	98
Women's Mile													
4:30.77	Joanne Pavey	1	Bristol	30	Aug	97	Women's 10,000m						
4:39.0J	* Jacqueline Beasley	2	Stretford	6	Aug	85							
4:39.90	Sonya Bowyer	3	Barnet Copthall 3	31	Aug	96	31:41.1	* Elana Meyer RSA	1	Watford	22	Jul	00
4:40.74	* M Aboulahcen BEL	4	Barnet Copthall 31	31	Aug	96	32:30.4	* Birhan Dagne	2	Watford	22	Jul	00
4:40.93	Liz Francis-Thomas	5	Barnet Copthall 31	31	Aug	96	32:31.9	* Rosemary Ryan IRE	3	Watford	22	Jul	00
4:41.20	Joanne Pavey	6	Barnet Copthall 31	31	Aug	96	32:34.7	* Sarah Wilkinson	4	Watford	22	Jul	00
4:42.43	Beatrice Roh GER	7	Barnet Copthall 31	31	Aug	96	32:52.5	* Hayley Yelling	5	Watford	22	Jul	00
4:44.79	Sarah Salmon	8	Barnet Copthall 3	31	Aug	96	32:57.3	* Bente Landoy NOR	6	Watford	22	Jul	00
Women's 3,000m							33:05.5	* Ann Keenan Buckley IRE	7	Watford	22	Jul	00
8:53.58mx	* Natalie Harvey AUS	1 mx	Cardiff	5	Jul	00	33:07.9	Liz Yelling	8	Watford	22	Jul	00
8:57.00mx	Joanne Pavey	2 mx	Cardiff	5	Jul	00	33:49.8	* Beverley Jenkins	9	Watford	22	Jul	00
9:02.35mx	Maria McCambridge IRE	3 mx	Cardiff	5	Jul	00	34:30.9	* Debbie Sullivan	10	Watford	22	Jul	00
9:02.88mx	* Hayley Yelling	4 mx	Cardiff	5	Jul	00							

All-Time World Junior Lists Distance Relays

Women's Junior 4x800m

8:37.71	Vere Technical HS (Jam) (_ Howell 2:11.3, _ Williams	(_ Howell 2:11.3, _ Williams 2:11.1, J_ Turner 2:12.1, Inez Turner 2:03.2)			27 Apr 91
8:39.6	(Rachael Ogden 2:09.9, Emma Davies 2:09.6, Ellen 0'Hare 2:09.1, Dorothea Lee 2:11.0)				
8:43.4'	(Diane Vetter __, Julie Stibbe _ Janis Vetter __, Debbie Vetter __)				
8:44.09	Vere Technical HS (Jam) (_ Boothe 2:13.6, J_ Turner		Penn ith 2:10	Philadelphia	29 Apr 89
8:44.69	Vere Technical HS (Jam)				92

Women's Junior 4x1500m

18:23.98 New South Wales (Aus)
24 Nov 90
18:34.58 Victoria Under 18 (Aus) $\quad 28$ Mar 92

18:38.0 \quad British Milers' Club (GB) $\quad 2 \quad$ BMC Watford 30 Apr 97 (Ellen O'Hare 4:37.3, Camilla Waite 4:43.1, Rachael Ogden 4:43.5, Jodie Swallow 4:34.1)
18:43.26 New South Wales U nde 16 (Aus)
26 Nov 88
18:52.5 University HS, Irvine, Ca (US) $1 \quad$ Mt. SAC Walnut, Calif. 23 Apr 82 (Laura Sauerwein 4:48.7, Polly Plumer 4:28.1, Judy McLaughlin 4:55.7, Teresa Barrios 4:40.5)

Men's Junior 4xMile

16:56.8 British Miler's Club (GB) $\quad 5 \quad$ BMC \quad Oxford 10 Jul 93 (Justin Swift-Smith 4:09.1, Eddie King 4:13.5, Simon Saxby 4:13.4, Daniel Furmidge 4:20.8)
17:06.6 South Eugene HS, Eugene, Ore. (US) Eugene, Ore. 7 May 76 (Dirk Lakeman 4:16.9, Chris Nielsen 4:19.7, Bill McChesney 4:11.8, John Gustafson 4:18.2)

17:10.7’ McCullough HS, The Woodlands, Tex. (US) $1 \quad$ The Woodlands, Tex. 1 Mar 86 (Danny Green 4:22.5m, Scott Cramer 4:18.9m, Shawn Barres 4:14.7m, Eric Henry 4:08.6m)
17:11.7 South Eugene HS, Eugene, Ore. (US) $1 \quad$ Axeman R Eugene, Ore. 9 May 75 (John Gustafson 4:20.5, Bill McChesney 4:17.6, Steve McChesney 4:19.4, Chris Nielsen 4:14.6)
17:12.2 Essex Catholic HS, Newark, NH (US) 1
Highland Park, NJ $\quad 7$ Jun 66 (Jim McLoughlin 4:23.9, Art Martin 4:18.0, Fred Lane 4:14.8, Marty Liquori 4:15.5

Women's Junior 4xMile

BMC Rankings 2002 (performan
Compiled by
Men 600
$1: 18.49$

1:46.29

1:46.29
1:46.75
1:46.75
1:47.18
$1: 47.61$
$1: 47.61$
$1: 47.69$
1
1:47.69
1:47.82
$1: 47.83$
$1: 47.82$
$1: 47.83$
1
1:47.83
1:47.87
1:47.87
1:48.01
1:48.01
1:48.09
$1: 48.17$
$1: 48.30$
1:48.83
$1: 48.85$
$1: 48.91$
$1: 4.93$
$1: 48.91$
$1: 48.93$
$1: 49.01$
1:49.01
$1: 49.47$
$1: 49.47$
$1: 49.63$
1:49.68
1:49.89
1:50.00
1:50.00
1:50.00
$1: 50$
$1: 5$
1
-
$-$

- -
-

$1:$
$1:$
$1:$
$1:$
$1:$
1
1
-
1
1
1
1
1
1
1

T
$1: 51.6$
$1: 51.63$
$1: 51.78$
$1: 51.79$
(1)
-

1
1
1

- -1
1
1
1
1

3:49.10	Dave Taylor SEN	3:57.97	Alistair Smith U20	4:03.67
3:49.14	Stuart Bailey SEN	3:58.0	Dominic McAllister U20	4:03.77
3:49.22	Chris Parr U20	3:58.02	Jon Brown SEN	4:03.89
3:49.25	Eoin O'Neill Sen	3:58.11	Daniel Wicks SEN	4:03.90
3:49.28	Nick Goodilife U23	3:58.13	Brian Farrell U20	4:04.02
3:49.40	Anthony Moran U17	3:58.17	Nick Samuels U23	4:04.06
3:49.40	Chris Reynolds U20	3:58.28	Joe Stephenson U20	4:04.2
3:49.43	John Frazer U23	3:58.3	Owain Mathews U23	4:04.26
3:49.50	David Anderson SEN	3:58.4	Francois Van Rensburg SEN	4:04.3
3:49.50	Peter Madson SEN	3:58.48	Robert Cole SEN	4:04.43
3:49.51	Andy Caine SEN	3:58.51	Tommy Davies U20	4:04.44
3:49.64	Steve Neill SEN	3:58.52	Henry Hammond U23	4:04.47
3:49.7	Karim Ouou SEN	3:58.6	Jonathan Blackledge U20	4:04.67
3:49.81	Ben Ruthe U23	3:58.70	Simon Hall U23	4:04.69
3:49.96	Tom Frazer U23	3:58.74	Mike Gregory SEN	4:04.73
3:49.96	Gareth Raven SEN	3:58.77	Chris Lamb U20	4:04.89
3:49.99	Steve Murphy U20	3:58.81	Paul Erwood U17	4:04.9
3:50.06	Lee Emanuel U20	3:58.83	Gareth Riddell SEN	4:04.90
3:50.14	Jason Lobo SEN	3:58.85	Adam Thomas U23	4:04.98
3:50.14	Darren Middleton U23	3:58.9	Antony Ford U20	4:05.00
3:50.27	Alex Wright U23	3:58.9	Andy Barber SEN	4:05.0
3:50.37	Des English SEN	3:58.97	Simon Cotton SEN	4:05.13
3:50.66	David Kelly U23	3:58.99	Julian Wilkie SEN	4:05.3
3:50.86	Robert Scanlon SEN	3:59.05	Steven Horn SEN	4:05.3
3:50.90	Alex Hodgkinson U20	3:59.09	David Wardle SEN	4:05.41
3:51.02	Mark Sanford SEN	3:59.1	Edward McGinley U20	4:05.8
3:51.02	Steve Rees-Jones SEN	3:59.11	Ken Harker SEN	4:05.86
3:51.06	Kojo Kyereme SEN	3:59.15	Gordon Irvine SEN	4:05.97
3:51.14	Mark Draper U20	3:59.2	Andrew Ingle U23	4:06.06
3:51.15	Alastair O'Connor SEN	3:59.20	Mustaffa Mohamed SEN	4:06.1
3:51.15	Curis Robb SEN	3:59.3	Shane McDermott U23	4:06.3
3:51.28	Jonathan Burrell SEN	3:59.34	Jon Hasell U20	4:06.4
3:51.55	Jonathan Stewart U23	3:59.37	Ian Wetherhall SEN	4:06.41
3:51.56	Steffan North SEN	3:59.4	Will Levett SEN	4:06.5
3:51.64	Richard Kay SEN	3:59.41	Tim Woodthorpe SEN	4:06.54
3:51.86	Andrew Walker SEN	3:59.47	James Williams U23	4:06.62
3:52.01	Tom Sharland U20	3:59.48	Nigel Wright U23	4:06.7
3:52.05	Corin Hughes U23	3:59.51	Tom Snow U17	4:06.7
3:52.12	Jamie Atkinson U20	3:59.57	Ahmed Ali U17	4:06.74
3:52.24	Lee Bowron U17	3:59.60	Mike Buton SEN	4:06.83
3:52.40	Clayton Bannon SEN	3:59.65	Matthew Barnes-Smith U17	4:06.9
3:52.51	Mark Christie U20	3:59.65	Brian Stopher U23	4:07.1
3:52.66	Shugri Omar U20	3:59.69	Stephen Davies U20	4:07.11
3:52.71	Neil Miller SEN	3:59.71	Adam Donegan U20	4:07.11
3:52.93	Richard Girvan SEN	3:59.72	Matthew Raw SEN	4:07.23
3:53.08	Adrian McGarva SEN	3:59.73	Steve Ablitt U20	4:07.28
3:53.08	Trevor Antao SEN	3:59.8	Daniel Simons SEN	4:07.3
3:53.18	Tom Doe U23	3:59.87	Louis Jones SEN	4:07.54
3:53.20	Brad Yewer SEN	3:59.95	Charlie Low SEN	4:07.55
3:53.35	Paul Ashley SEN	3:59.98	Andrew McKenna U23	4:07.6
3:53.43	Bruce Raeside U23	4:00.0	Sean Dixon U20	4:07.76
3:53.44	David Cowlishaw SEN	4:00.04	Dave Webb U23	4:07.77
3:53.55	Noel Pollock SEN	4:00.09i	Neil Tucker SEN	4:07.88
3:53.65	Andrew Brown SEN	4:00.13	Ryan Davoile SEN	4:07.90
3:53.70	Martyn Cryer U23	4:00.16	Kev Hope SEN	4:07.97
3:53.73	Paul Morby SEN	4:00.17	James Wardman U23	4:08.05
3:53.79	Matt Skelton SEN	4:00.22	Tom Humphries U20	4:08.19
3:53.92	Colm Rothery VET	4:00.25	Lewis Cadman U20	4:08.68
3:54.02	Luke Gunn U20	4:00.27	Alaster Stewart SEN	4:08.79
3:54.06	Kerr Johnstone U23	4:00.3	Neil Gamester U20	4:08.8
3:54.06	Steve Clarke SEN	4:00.35	Ian Munro U20	4:08.89
3:54.07	Michael Rimmer U17	4:00.35	Tim Grose SEN	4:08.9
3:54.10	Tim Prendergast SEN	4:00.38	Richard Burman SEN	4:09.15
3:54.11	Robert Goodwin U20	4:00.43	Chris Taylor U23	4:09.3
3:54.15	Gareth Klepacz U23	4:00.44	Ewen Malloch SEN	4:09.34
3:54.17	Nick Talbot SEN	4:00.44	Daniel Yates U23	4:09.5
3:54.25	James Hayden SEN	4:00.5	Mark Hood U23	4:09.6
3:54.35	David Kelly U23	4:00.50	Ian Carter U20	4:09.6
3:54.38	Mark Brown SEN	4:00.51	Adam Dyson U23	4:09.6
3:54.54	Matt Janes U23	4:00.57	Martin Flook U23	4:09.66
3:54.57	Andrew Blair U23	4:00.59	Chris Bryant U20	4:09.7
3:54.59	Alan Wales U20	4:00.6	Simon Rusbridge U23	4:09.80
3:54.81	Dermot Donnelly SEN	4:00.71	Mark Buckingham U20	4:09.95
3:54.86	Andrew Toward U20	4:00.73	Richard Kinsey U20	4:10.2
3:55.1	Andy Thomas U23	4:00.76	Matt Warley U20	4:10.27
3:55.15	Tom Penfold U20	4:00.80	Joachim Wolf SEN	4:10.4
3:55.48	Martin Hilton SEN	4:00.82	Ben Green U17	4:10.55
3:55.56	Tom Gayle U20	4:00.98	Andrew Walling SEN	4:10.58
3:55.63	Matt Smith SEN	4:01.01	James Horsman U17	4:10.7
3:55.70	Sean Kelly SEN	4:01.03	Gavin Smith U20	4:11.55
3:55.75	Ian Salisbury SEN	4:01.19	Delroy Simon SEN	4:11.6
3:55.89	Rick Hayman SEN	4:01.2	Ben Harding U17	4:11.7
3:56.01	Steffan White SEN	4:01.34	Mike Thompson SEN	4:11.9
3:56.06	Phil Nicholls U20	4:01.35	Matthew Jones U23	4:11.90
3:56.1	Lee Browell U23	4:01.35	John Eves U20	4:12.25
3:56.15	Dan Lewis SEN	4:01.35	Richard Burney SEN	4:12.32
3:56.18	Luke Beevor U20	4:01.40	Thomas Oliver U20	4:12.46
3:56.20	Paul Moores U20	4:01.4	Chris Knights U17	4:12.50
3:56.23	James Ellis U17	4:01.4	Geoff Baxter SEN	4:12.58
3:56.25	Alistair Moses SEN	4:01.49	Gareth Tapper U20	4:12.84
3:56.37	Andrew Dunwoody SEN	4:01.49	Huw Evans SEN	4:12.86
3:56.4	Gavin Massingham U23	4:01.5	Abdi Ali U23	4:12.86
3:56.42	Neil Burton U23	4:01.57	Mathew Nicholls SEN	4:12.87
3:56.50	Alex Tanner SEN	4:01.6	Craig Ivemy U17	4:13.22
3:56.52	Chris Warburton U20	4:01.62	Aidan Adams U23	4:13.66
3:56.57	Lee Rodriguez SEN	4:01.77	Kirk Wilson U20	4:13.78
3:56.6	Craig Wheeler SEN	4:01.8	Richard Kemp U20	4:13.90
3:56.66	Chris Smith SEN	4:01.8	Mark Cripsey SEN	4:14.13
3:56.67	Ryan McLeod U20	4:01.81	Terry Hawkey U20	4:14.23
3:56.81	Scott Tompsett SEN	4:01.96	Steve Hallas SEN	4:14.29
3:56.82	Kevin Hayes SEN	4:02.1	Colin Hawkins U20	4:14.5
3:56.85i	Gareth Balch U20	4:02.11	Bill Foster VET	4:14.54
3:56.90	Mike Benford SEN	4:02.16	Darryl Hards U23	4:15.1
3:56.91	Martin Whitehouse SEN	4:02.27	Daniel Gurmin U20	4:15.21
3:56.96	Mathew Plano SEN	4:02.28	David Udal U20	4:15.57
3:57.14	Chris Hart U17	4:02.36	Laurence Savva U20	4:16.08
3:57.41	Paul Whitelam U23	4:02.37	Neil Wilkinson SEN	4:16.4
3:57.43	Jon Rice U23	4:02.40	Tim Egerton U20	4:16.82
3:57.53	Richard Lee U23	4:02.56	Darren Malin U20	4:16.95
3:57.62	Chris Bird U23	4:02.84	Chris Hearn U23	4:17.1
3:57.64	Rob Elmore U23	4:02.88	Matthew Norminton SEN	4:17.2
3:57.65	Gearoid O'Connor SEN	4:03.00	Mike Paddon SEN	4:17.24
3:57.67	Andrew Morgan-Lee SEN	4:03.00	Adam Watt U20	4:17.37
3:57.69	Simon Plummer SEN	4:03.21	Jim Guest SEN	4:17.39
3:57.7	Ben Wiffen U20	4:03.4	Kairn Stone SEN	4:17.78
3:57.74	Chris O'Connell U23	4:03.47	Tim Cook SEN	4:17.92
3:57.83	Mark Pollard U23	4:03.5	Dave Ricketts SEN	4:17.93
3:57.84	David Jones U20	4:03.51	James Hogan U20	4:17.97
3:57.9	Kevin Quinn SEN	4:03.54	Sean Dirrane U17	4:17.99
3:57.96	Gordon Lee U23	4:03.64	Ryan Armstrong U20	4:18.1

3.5	mes Hayden SEN
8:33.99	Corin Hughes U23
8:34.19	Neil Miller SEN
8:34.7	Gordon Lee U23
8:35.05	Max Colligan SEN
8:35.07	David Anderson SEN
8:35.37	Simon Plummer SEN
8:35.78	Noel Thather SEN
8:36.12	Sam Jacobs U20
8:37.42	Mathew Norminton SEN
8:37.7	Kevin Hayes SEN
8:37.84	Simon Everington SEN
8:39.08	Mark Pollard U23
8:39.59	Jack Vail U20
8:39.89	Ryan McLeod U20
8:40.43	Scott Britain SEN
8:41.04	Pat Muldoon U23
8:42.7	Simon Cotton SEN
8:43.21	Andrew Ingle U23
8:43.48	Nick Altmann SEN
8:46.09	Iain Donnan U20
8:46.29	Joe Stephenson U20
8:46.33	Andrew McKenna U23
8:49.24	Jonathan Blackledge U20
8:49.83	Hassan Raidi SEN
8:50.0	Kev Hope SEN
${ }^{8: 50.5}$	Sam Robinson U20
8:50.85	Dafydd Clarke SEN
8:51.35	Daniel Carthy U23
8:53.15	Stuart Campbell SEN
8:55.02	David Swinburne SEN
8:55.49	Chris Parr U20
8:56.6	Martin Shore SEN
8:57.07i	R Starr SEN
8:57.23i	Oliver Mytton SEN
8:57.94	Ian Murray SEN
9:00.96	Jon Archer SEN
9:03.44	Tim Grose SEN
9:03.55i	Gareth Klepacz U23
9:06.68	Gary Hughes U17
9:13.12i	Ben Cox U20
9:19.7	Tony Roper SEN
9:24.08	Mark Harris U23
9:32.27	Tom Faiers U15
9:41.2	Kane Desborough U17
9:53.05	Kieran Leson U17
10:06.35	Robbie Dale U17
Men 5000	
13:38.52	Sam Haughian SEN
13:46.63	Rob Denmark SEN
13:46.89	Julius Kimati SEN
13:47.10	Glen Stewart SEN
13:47.88	Ian Hudspith SEN
13:47.99	Killian Lonergan SEN
13:48.60	Mark Miles SEN
13:50.8	Chris Thompson U23
13:54.92	Jon Wild SEN
13:56.36	Julio Rey SEN
13:57.44	Glynn Tromans SEN
13:57.5	Rod Finch SEN
14:00.5	Mohamed Farah U20
14:01.81	Mark Steinle SEN
14:03.0	Robert Connelly SEN
14:05.23	Dermot Donnelly SEN
14:06.02	Ian Gillespie SEN
14:06.21	Andres Jones SEN
14:06.44	Rob Birchall SEN
14:07.18	David Hibbert SEN
14:08.05	Mark Morgan SEN
14:09.5	Stephen Hepples U23
14:12.10	Gareth Raven SEN
14:13.7	Oliver Laws U23
14:15.5	Arkangell Roko SEN
14:15.80	Kojo Kyereme SEN
14:16.2	Mark Kenneally U23
14:16.61	Will Levett SEN
14:19.89	Alex Hains U23
14:24.33	Steve Body SEN
14:24.48	Vinny Mulvey SEN
14:25.85	Nathaniel Lane SEN
14:26.27	Mark Brown SEN
14:26.7	Andy Caine SEN
14:26.86	Kairn Stone SEN
14:27.7	Nick Goodifife U23
14:28.65	AC Muir SEN
14:29.28	Antony Ford U20
14:30.81	Steven Cairns SEN
14:33.3	Martin Hilton SEN
14:36.81	Dave Norman SEN
14:38.27	Martyn Cryer U23
14:39.12	Tom Sharland U20
14:39.49	Dave Ricketts SEN
14:40.7	Jerome Brooks SEN
14:42.5	Gordon Lee U23
14:42.8	Chris Cariss SEN
14:43.3	Tom Naylor SEN
14:43.44	Rick Hayman SEN
14:43.7	Huw Lobb SEN
14:44.0	Matt Janes U23
14:44.24	Mohamed El-Sadiki SEN
14:45.02	Andy Parker SEN
14:45.1	Andrew Morgan-Lee SEN
14:45.30	Robert Wade SEN
14:47.2	Mustaffa Mohamed SEN
14:48.8	David Wardle SEN
14:50.27	Dave Webb U23
14:50.60	Andrew Swearman SEN
14:50.87	Chris Carriss SEN
14:54.18	Sam Jacobs U20
14:54.42	Edward McGinley U20
14:57.3	Phil Hinch SEN
14:57.88	Mathew Bell SEN
14:59.93	Paul Moore SEN
15:00.88	Steve Edmonds SEN
15:01.43	${ }^{\text {Bill Foster VET }}$
15:01.5	Louis Jones SEN
15:04.17	Noel Thatcher SEN
15:04.92	Paul Coleman SEN Shane Snow SEN

James Hayden SEN Neil Miller SEN Max Colligan SEN Savid Anderson SEN Noel Thatcher SEN
Sam Jacobs U20 Matthew Norminton SEN Kimon Everington S Mark Pollard U2 Ryan McLeod U Scott Brittain SEN Simon Cotton SE Andrew Ingle U23 Iain Donnan U20 Andrew McKenna U23 Jonathan Blackledge U20 Kev Hope SEN Dafydd Clarke SEN Daniel Carthy U23 David Swinburne SEN Chris Parr U20 R Starr SEN Ian Murray SEN Jon Archer SEN
Tim Grose SEN Gareth Klepacz U23 Ben Cox U20 Tony Roper SEN Tom Faiers U15 Kieran Leeson U17 Sam Haughian SEN Rob Denmark SEN
Julius Kimati SEN Glen Stewart SEN
Ian Hudspith SEN Killian Lonergan SE
Mark Miles SEN Chris Thompson U2 Jon Wild SEN
Julio Rey SEN Rod Finch SEN Mohamed Farah U20
Mark Steinle SEN Robert Connelly SEN Ian Gillespie SEN Rob Birchall SEN David Hibbert SEN
Mark Morgan SEN Stephen Hepples U23 Oliver Laws U23 Arkangell Roko SEN
Kojo Kyereme SEN Will Levett SEN Alex Hains U23 Vinny Mulvey SEN Mark Brown SEN Andy Caine SEN
Kairn Stone SEN Nick Goodliffe U23 Antony Ford U20 Steven Cairns SEN Mave Norman SEN Tom Sharland U20 Dave Ricketts SEN Gordon Lee U23 Tom Naylor SEN Huw Lobb SEN Mohamed El-Sadiki SE Andy Parker MEN Morgan-Lee SEN Mustaffa Mohamed SEN David Wardle SEN Andrew Swearman SEN Sam Jacobs U20 Phil Hinch SEN Matthew Bell SEN Steve Edmonds SEN Louis Jones SEN Shane Snow SEN

Women 600

Mike Burrett SEN
David Swinburne SEN
Matt Lockett SEN
Simon Plummer SEN
Peter Grime SEN
Kieron Carlin SEN
Alex Oldfield SEN
George Kirk SEN
Jon Archer SEN
Mike Boocher SEN
Tony Roper SEN
Tim Bailey SEN
David Jones U20
Chris Symonds SEN
Matthew Norminton SEN

Pat Davoren SEN
Eugene O'Neill SEN
Eliud Kirui U23
Andrew Robinson SEN
Kevin Sheppard SEN
Garrett Coughlan U23
Charlie Low SEN
Peter Kellie U20
Arkangell Roko SEN
Gareth Cochlin SEN
Alistair Smith U20
Mohamed El-Sadiki SEN
Gavin Smith U20
Andy Ellis U20
Daniel Taylor U20

Bev Blakeman VET	4:59.7	Anna Ferguson U20
Helen Zenner U23	4:59.9	Katie Knowles U13
Victoria Webster U20	5:01.36	Sarah Hopkkson U13
Kathry Frost U20	5:01.4	Shavaun Henry SEN
Freya Murray U20	5:01.83	Kirsty Walker U15
Gemma Turtle U17	5:02.09	Linda Ansell SEN
Maria Sharp SEN	5:02.9	Kate Buchan U20
Susie Rutherford SEN	5:03.80	Hayley Munns U17
Hannah Whitmore U20	5:04.44	Efa Llewellyn U17
Karen Hill SEN	5:04.5	Joanne Callaway U15
Leonie Smith U17	5:04.68	Natasha Barnes-Smith
Hannah England U17	5:04.84	Karen Reynolds V35
Esther Evans SEN	5:04.9	Kate Goodhead U20
Stacey Ward U20	5:05.0	Holly Knight U15
Sarah Herbert U20	5:05.2	Olivia Kenney U15
Emily Adams U20	5:05.21	Amy Wilkinson U17
Charlote Wickham U20	5:06.21	Christina Whitelaw U
Ellie Chadwick SEN	5:06.8	Amanda Evans U20
Liz Proctor SEN	5:07.56	Claire Conway U15
Meredith Pannett SEN	5:09.71	Georgina Furze U15
Miriam Gaskell U20	5:09.9	Nicky Morris U15
Josephine Rhodes U17	5:10.0	Susannah Davies U15
Alexa Joel U20	5:10.5	Melissa Harvey U15
Ruth Waller U20	5:10.54	Amy Tanner U20
Becky Ellis U17	5:12.8	Sarah Tedd U15
Claire Smallwood SEN	5:13.7	Sara Grosvenor SEN
Jo Harper U17	5:14.8	Michelle Stevens U17
Kerry Clarke SEN	5:16.0	Sarah Jones U17
Julia Russell U20	5:17.7	Lauren Webb U15
Ava Hutchinson U20	5:18.14	Lucy Hiscox U17
Lisa Cater U20	5:18.5	Tina Evans U15
Abigail Wilshire U20	5:20.5	Claire Griffin U17
Laura Kennedy U20	5:26.88	Nicola Bartholemew U17
Emma Satterly U23	5:31.1	Jenni Burns U15
Non Stanford U15	5:34.4	Rebecca Stubbs SEN
Emma Brady SEN	5:36.1	Kyra Hawkins U15
Helen Bebbington U23	5:39.1	Zara Turner U13
Emily Pidgeon U15	5:43.0	Laura Robinson U15
Emma Pallant U15	6:03.9	Geraldine Kellman U15
Caroline Dickie SEN	6:23.0	Kim Rye SEN
Nikki Hamblin U15	6:28.3	Natalie Newton U15
Frances Briscoe U20	6:38.9	Bernadette Rye U17
Eleanor Stevens U20	7:08.3	Emma Andrew SEN
Isabelle Staate U17	7:20.0	Zoe Hodge U17
Joanne King SEN		
Alison Hurford SEN	Women 3000	
Elizabeth Egan SEN	9:12.47	Gillian Palmer U23
Emily Nelson SEN	9:14.58	Diane Heneghan SEN
Emma Grant U23	9:15.88	Nicole Jefferson SEN
Laura Nurse U20	9:24.40	Danielle Barnes U17
Laura Carney SEN	9:26.61	Andrea Green SEN
Brigit Cooke U20	9:27.78	Catherine Dugdale SEN
Bernadine Pritchett SEN	9:31.12	Sally Oldfield U20
Sara Stevenson U23	9:34.88	Kate Reed U23
Jill Knowles SEN	9:35.04	Claire Smallwood SEN
Lorna Vyse U20	9:35.39	Ann-Marie Hutchison SEN
Michelle Harvey U20	9:36.03	Collette Fagan U23
Eloise Pitwood U17	9:38.56	Allison Higgins SEN
Grace Greenhalgh SEN	9:40.59	Rachael Nathan U17
Gemma Marrs U20	9:40.89	Maria Skelton U23
Sara Ponsford U17	9:44.39	Emily Pidgeon U15
Claire Tarplee U15	9:53.83	Denise Smith U23
Laura Dowsing U15	9:57.28	Shona Hughes SEN
Claire Taylor U23	10:01.84	Jo Kelsey SEN
Megan Foley U15	10:05.46	Joanne King SEN
Diana Kennedy SEN	10:06.37	Janine Brown U23
Emily Collinge U15	10:07.59	Elizabeth Egan SEN
Gemma Curley U15	10:11.71	Trudi Thomson VET
Hannah Jones U15	10:12.71	Kate Goodhead U20
Claire Holme U20	10:14.84	Sheila Doyle SEN
Denise Smith U23	10:19.14	Emma Whitaker U17
Joanne Brewer U23	10:25.43	Katherine Humphreys U17
Natalie Dover U23	10:37.51	Toni McIntosh SEN
Kelly Crickmore SEN	10:41.78	Suzanne Richards U17
Jolene Ennis U17	11:04.34	Megan Dark U20
Claire Bassill U23		
Carolyn Boosey U20	Women 5000	
Katherine Humphreys U17	15:44.07	Yelena Burykina SEN
Natalie Real U15	15:53.96	Gillian Palmer U23
Connie Crone U17	15:59.54	Jo Wilkinson SEN
Samantha Hart U17	16:02.7	Hind Musa U17
Lucy Ferguson U17	16:10.32	Lucy Wright SEN
Stephanie Robson SEN	16:14.86	Dorte Viberg SEN
Linda Jackson SEN	16:15.03	Vanessa Veiga SEN
Stacey Preston U15	16:16.55	Charlotte Dale U20
Ruth Vlassak V35	16:25.01	Penny Thackray SEN
Charlie Gaspar U15	16:25.70	Andrea Green SEN
Laura Bache U15	16:26.24	Maria Skelton U23
Jane Pidgeon SEN	16:27.61	Catherine Dugdale SEN
Vicky Rolfe U23	16:38.93	Collette Fagan U23
Jemma Corley U15	16:41.18	Tara Krzywicki SEN
Louise Durman U17	16:41.72	Jilly Ingman SEN
Beth Harris U23	16:46.94	Meredith Pannett SEN
Danielle Christmas U15	16:49.60	Claire Smallwood SEN
Kiri Nowak U17	16:59.24	Annette Kealy SEN
Helen Hall U15	17:06.19	Caroline Hoyte SEN
Sharon Marshall SEN	17:10.44	Sue Cripsey U23
Vicky Callaway U17	17:15.82	Rachel Goddard SEN
Nisha Desai U20	17:23.32	Sarah Singleton SEN
Deborah Howard VET	17:31.10	Gill Keddie SEN
Cheryl Hammond U17	17:36.28	Sheila Doyle SEN
Veronique Pittwood U17	17:39.10	Suzanne Owen SEN
Georgina Parnell U23	18:23.89	Duka Mana U17
Nawal Naji U17	18:58.34	Sarah Willimott U23
Laura Johnson U20		
Michelle Moore U17	Women 2000S	
Emma Whittaker-Axon U20	7:05.03	Claire Entwistle SEN
Laura Jones U15	7:10.94	Elizabeth Egan SEN
Lucie Howarth U15	7:24.98	Joanne King SEN
Stephanie Lyall U15	7:25.07	Jane Pidgeon SEN
Laura Brenton U17	7:29.03	Sarah Beevers SEN
Victoria Adlard U17	7:34.89	Ruth Waller U20
Megan Jones U17	7:37.73	Celia De Maria SEN
Lynsey Morris U23	7:57.69	Louise Bardsley U23
Alexia Trafford U17	Complete BMC rankings for this and previou seasons and also current UK ranking lists can be found on the BMC website www.britishmilersclub.com Corrections are welcomed by Tim Grose timgrose@ britishmilersclub.com	
Bethan Davies U17		
${ }^{\text {Justine Kinney U15 }}$		
Elizabeth Spencer U20		
Abbie Lawson U15 Abbie Williamson U15		

HALF THINKER

HALF NU1IER

WITH A WIND CHILL OF MINUS 5 AND A 20 MPH SIDE WIND, 10 GRAMS OF EXTRA CLOTHING FEELS MORE LIKE 10 KG. OBVIOUSLY, LAYERING CLOTHES IN THESE CONDITIONS IS LESS THAN IDEAL: UNFORTUNATELY, IT IS ESSENTIAL. BUT THEN CAME THE NIKE SPHERE PRO JACKET. THIS THREE-DIMENSIONAL, MULTI-LAYERED, HYBRID FABRIC COMBINES MOISTURE MANAGEMENT, THERMO-REGULATION AND WATER PROTECTION ALL IN ONE. CONFUSED? SEE FIG 1.

CROSS-SECTION OF THE MATERIAL [A] TEFLON FINISHED WOVEN OUTER [B] WATER-RESISTANT HYDROPHOBIC MEMBRANE [C] ANTI-BACTERIAL POLYPROPYLENE FOAM [D] SWEAT MANAGEMENT KNIT BASE

SO WHAT'S WITH ALL THE FUNNY WAFFLE DENTS? THOSE ENGINEERED AIR POCKETS CREATE A COMFORTABLE PERSONAL ATMOSPHERE AROUND YOUR BODY, INDEPENDENT OF EXTERNAL ELEMENTS. IN OTHER WORDS, THEY KEEP YOU WARM AND DRY DESPITE THE ODDS.

FIG. 2 HEAT RISES FROM YOUR BODY AND GETS TRAPPED IN THE ENGINEERED AIR POCKETS.

UNDER ARM STRETCH GUSSET TUCKS NICELY INTO YOUR ARMPIT TO REDUCE BULK. DOESN'T FLAP ABOUT. NUFF SAID.

MESH LINED SIDE POCKETS
DOUBLE UP AS EXTRA VENTS WITH LOCKABLE ZIPS. OPEN THE ZIP TO LET IN YOUR DESIRED AMOUNT OF AIR.

For runners by runners.

